We study the large-time behaviour of the nonlinear oscillator
Mots clés : nonlinear oscillator, nonlinear damping, fast orbits
@article{COCV_2003__9__231_0, author = {V\'azquez, Juan Luis}, title = {The nonlinearly damped oscillator}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {231--246}, publisher = {EDP-Sciences}, volume = {9}, year = {2003}, doi = {10.1051/cocv:2003006}, mrnumber = {1966532}, zbl = {1076.34038}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2003006/} }
TY - JOUR AU - Vázquez, Juan Luis TI - The nonlinearly damped oscillator JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 231 EP - 246 VL - 9 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2003006/ DO - 10.1051/cocv:2003006 LA - en ID - COCV_2003__9__231_0 ER -
Vázquez, Juan Luis. The nonlinearly damped oscillator. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 231-246. doi : 10.1051/cocv:2003006. http://www.numdam.org/articles/10.1051/cocv:2003006/
[1] The focusing problem for the radially symmetric porous medium equation. Comm. Partial Differential Equations 20 (1995) 1217-1240. | MR | Zbl
and ,[2] The Porous Medium Equation. Springer-Verlag, Berlin/New York, Lecture Notes in Math. 1224 (1985). | MR | Zbl
,[3] Limit behaviour of focusing solutions to nonlinear diffusions. Comm. Partial Differential Equations 23 (1998) 307-332. | MR | Zbl
, and ,[4] A selfsimilar solution to the focusing problem for the porous medium equation. Euro. J. Appl. Math. 4 (1992) 65-81. | MR | Zbl
and ,[5] The porous medium equation as a finite-speed approximation to a Hamilton-Jacobi equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987) 203-330. | Numdam | Zbl
and ,[6] A very singular solution of the heat equation with absorption. Arch. Rational Mech. Anal. 95 (1986) 185-209. | MR | Zbl
, and ,[7] Applications of centre manifold theory. Springer-Verlag, New York-Berlin, Appl. Math. Sci. 35 (1981) vi+142 pp. | MR | Zbl
,[8] On the focusing problem for the PME with absorption. A geometrical approach (in preparation).
and ,[9] Nonlinear partial differential equations and free boundaries. Vol. I. Elliptic equations. Pitman (Advanced Publishing Program), Boston, MA, Res. Notes in Math. 106 (1985). | MR | Zbl
,[10] On the asymptotic behaviour for a damped oscillator under a sublinear friction. Rev. Acad. Cien. Ser. A Mat. 95 (2001) 155-160. | MR | Zbl
and ,[11] Self-similar solutions to a very fast diffusion equation. Adv. Differential Equations (to appear). | MR
and ,[12] Second-order interface equations for nonlinear diffusion with very strong absorption. Commun. Contemp. Math. 1 (1999) 51-64. | MR | Zbl
, and ,[13] Behaviour of interfaces in a diffusion-absorption equation with critical exponents. Interfaces Free Bound. 2 (2000) 425-448. | MR | Zbl
, and ,[14] Regularity of interfaces in diffusion processes under the influence of strong absorption. Arch. Ration. Mech. Anal. 149 (1999) 183-212. | MR | Zbl
, and ,[15] Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Revised and corrected reprint of the 1983 original. Springer-Verlag, New York, Appl. Math. Sci. 42 (1990). | MR | Zbl
and ,[16] Comportement à l'infini pour certains systèmes non linéaires. Proc. Roy. Soc. Edinburgh Ser. A 84 (1979) 213-234. | Zbl
,[17] Differential equations, dynamical systems, and linear algebra. Academic Press, New York-London, Pure Appl. Math. 60 (1974). | MR | Zbl
and ,[18] A nonlinear diffusion-absorption equation with unbounded initial data, in Nonlinear diffusion equations and their equilibrium states, Vol. 3. Gregynog (1989) 243-263. Birkhäuser Boston, Boston, MA, Progr. Nonlinear Differential Equations Appl. 7 (1992). | MR | Zbl
, and ,[19] Foundations of Optimal Control Theory. J. Wiley and Sons, New York, SIAM Ser. Appl. Math. (1967). | MR | Zbl
and ,[20] The Cauchy problem and boundary problems for equations of the type of unsteady filtration. Izv. Akad. Nauk SSR Ser. Mat. 22 (1958) 667-704. | MR
, and ,[21] Differential equations and dynamical systems, Third edition. Springer-Verlag, New York, Texts in Appl. Math. 7 (2001). | MR | Zbl
,[22] An Introduction to the Mathematical Theory of the Porous Medium Equation, in Shape Optimization and Free Boundaries, edited by M.C. Delfour. Kluwer Ac. Publ., Dordrecht, Boston and Leiden, Math. Phys. Sci. Ser. C 380 (1992) 347-389. | MR | Zbl
,Cité par Sources :