Lower semicontinuity results are obtained for multiple integrals of the kind , where is a given positive measure on , and the vector-valued function belongs to the Sobolev space associated with . The proofs are essentially based on blow-up techniques, and a significant role is played therein by the concepts of tangent space and of tangent measures to . More precisely, for fully general , a notion of quasiconvexity for along the tangent bundle to , turns out to be necessary for lower semicontinuity; the sufficiency of such condition is also shown, when belongs to a suitable class of rectifiable measures.
Mots clés : Borel measures, tangent properties, lower semicontinuity
@article{COCV_2003__9__105_0, author = {Fragal\`a, Ilaria}, title = {Lower semicontinuity of multiple $\sf \mu $-quasiconvex integrals}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {105--124}, publisher = {EDP-Sciences}, volume = {9}, year = {2003}, doi = {10.1051/cocv:2003002}, mrnumber = {1957092}, zbl = {1066.49009}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2003002/} }
TY - JOUR AU - Fragalà, Ilaria TI - Lower semicontinuity of multiple $\sf \mu $-quasiconvex integrals JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 105 EP - 124 VL - 9 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2003002/ DO - 10.1051/cocv:2003002 LA - en ID - COCV_2003__9__105_0 ER -
%0 Journal Article %A Fragalà, Ilaria %T Lower semicontinuity of multiple $\sf \mu $-quasiconvex integrals %J ESAIM: Control, Optimisation and Calculus of Variations %D 2003 %P 105-124 %V 9 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2003002/ %R 10.1051/cocv:2003002 %G en %F COCV_2003__9__105_0
Fragalà, Ilaria. Lower semicontinuity of multiple $\sf \mu $-quasiconvex integrals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 105-124. doi : 10.1051/cocv:2003002. http://www.numdam.org/articles/10.1051/cocv:2003002/
[1] Semicontinuity problems in the Calculus of Variations. Arch. Rational Mech. Anal. 86 (1984) 125-145. | MR | Zbl
and ,[2] Introduzione alla Teoria Geometrica della Misura e Applicazioni alle Superfici Minime, Lectures Notes. Scuola Normale Superiore, Pisa (1996). | Zbl
,[3] On the lower-semicontinuity of quasi-convex integrals in SBV. Nonlinear Anal. 23 (1994) 405-425. | MR | Zbl
,[4] Lower-semicontinuity problems in Sobolev spaces with respect to a measure. J. Math. Pures Appl. 75 (1996) 211-224. | MR | Zbl
, and ,[5] -quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225-253. | MR | Zbl
and ,[6] Characterization of optimal shapes and masses through Monge-Kantorovich equation. J. Eur. Math. Soc. 3 (2001) 139-168. | Zbl
and ,[7] Mean curvature of a measure and related variational problems. Ann. Scuola Norm. Sup. Pisa. Cl. Sci. IV XXV (1997) 179-196. | Numdam | MR | Zbl
, and ,[8] Convergence of Sobolev spaces on varying manifolds. J. Geom. Anal. 11 (2001) 399-422. | MR | Zbl
, and ,[9] Energies with respect to a measure and applications to low dimensional structures. Calc. Var. Partial Differential Equations 5 (1997) 37-54. | MR | Zbl
, and ,[10] Homogenization of thin structures by two-scale method with respect to measures. SIAM J. Math. Anal. 32 (2001) 1198-1126. | MR | Zbl
and ,[11] Homogenization of elastic thin structures: A measure-fattening approach. J. Convex. Anal. (to appear). | MR | Zbl
and ,[12] Semicontinuity, -convergence and Homogenization for Multiple Integrals, Lectures Notes. SISSA, Trieste (1994).
,[13] Semicontinuity, Relaxation, and Integral Representation in the Calculus of Variations. Longman, Harlow, Pitman Res. Notes Math. Ser. 207 (1989). | MR | Zbl
,[14] Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin, Appl. Math. Sci. 78 (1988). | MR | Zbl
,[15] Measure Theory and Fine Properties of Functions. CRC Press, Ann Harbor, Stud. in Adv. Math. (1992). | MR | Zbl
and ,[16] Geometric Measure Theory. Springer-Verlag, Berlin (1969). | MR | Zbl
,[17] Quasi-convex integrands and lower semicontinuity in . SIAM J. Math. Anal. 23 (1992) 1081-1098. | MR | Zbl
and ,[18] On some notions of tangent space to a measure. Proc. Roy. Soc. Edinburgh 129A (1999) 331-342. | MR | Zbl
and ,[19] Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (2000). | MR | Zbl
and ,[20] Sobolev meets Poincaré. C. R. Acad. Sci. Paris 320 (1995) 1211-1215. | MR | Zbl
and ,[21] On lower semicontinuity of integral functionals I and II. SIAM J. Contol Optim. 15 (1997) 521-538 and 991-1000. | MR | Zbl
,[22] Lower semicontinuity in spaces of weakly differentiable functions. J. Math. Ann. 313 (1999) 653-710. | MR | Zbl
,[23] Lower semicontinuity of quasiconvex integrals. Manuscripta Math. 85 (1994) 419-428. | MR | Zbl
,[24] Contributions à une approche générale de la régularisation variationnelle de fonctionnelles intégrales, Thèse de Doctorat. Université de Montpellier II (1999).
,[25] Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals. Manuscripta Math. 51 (1985) 1-28. | MR | Zbl
,[26] On the existence of minima of multiple integrals in the Calculus of Variations. J. Math. Pures Appl. 62 (1983) 1-9. | MR | Zbl
and ,[27] Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, London (1995). | MR | Zbl
,[28] Multiple Integrals in the Calculus of Variations. Springer-Verlag, Berlin (1966). | MR | Zbl
,[29] Weak lower semicontuity of integral functionals. J. Optim. Theory Appl. 19 (1976) 3-16. | MR | Zbl
,[30] A measure with a large set of tangent measures. Proc. Amer. Math. Soc. 123 (1995) 2217-2221. | Zbl
,[31] Geometry of measures on : Distribution, rectifiability and densities. Ann. Math. 125 (1987) 573-643. | MR | Zbl
,[32] Lectures on Geometric Measure Theory. Australian Nat. Univ., Proc. Centre for Math. Anal. 3 (1983). | MR | Zbl
,[33] Multiapplications mesurables à valeurs convexes compactes. J. Math. Pures Appl. 50 (1971) 265-297. | MR | Zbl
,[34] On an extension and an application of the two-scale convergence method. Mat. Sb. 191 (2000) 31-72. | MR | Zbl
,Cité par Sources :