Design-dependent loads in topology optimization
ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 19-48.

We present, analyze, and implement a new method for the design of the stiffest structure subject to a pressure load or a given field of internal forces. Our structure is represented as a subset S of a reference domain, and the complement of S is made of two other “phases”, the “void” and a fictitious “liquid” that exerts a pressure force on its interface with the solid structure. The problem we consider is to minimize the compliance of the structure S, which is the total work of the pressure and internal forces at the equilibrium displacement. In order to prevent from homogenization we add a penalization on the perimeter of S. We propose an approximation of our problem in the framework of Γ-convergence, based on an approximation of our three phases by a smooth phase-field. We detail the numerical implementation of the approximate energies and show a few experiments.

DOI : 10.1051/cocv:2002070
Classification : 49Q20, 74P05, 74P15
Mots-clés : topology optimization, optimal design, design-dependent loads, $\Gamma $-convergence, diffuse interface method
@article{COCV_2003__9__19_0,
     author = {Bourdin, Blaise and Chambolle, Antonin},
     title = {Design-dependent loads in topology optimization},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {19--48},
     publisher = {EDP-Sciences},
     volume = {9},
     year = {2003},
     doi = {10.1051/cocv:2002070},
     mrnumber = {1957089},
     zbl = {1066.49029},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2002070/}
}
TY  - JOUR
AU  - Bourdin, Blaise
AU  - Chambolle, Antonin
TI  - Design-dependent loads in topology optimization
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2003
SP  - 19
EP  - 48
VL  - 9
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2002070/
DO  - 10.1051/cocv:2002070
LA  - en
ID  - COCV_2003__9__19_0
ER  - 
%0 Journal Article
%A Bourdin, Blaise
%A Chambolle, Antonin
%T Design-dependent loads in topology optimization
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2003
%P 19-48
%V 9
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2002070/
%R 10.1051/cocv:2002070
%G en
%F COCV_2003__9__19_0
Bourdin, Blaise; Chambolle, Antonin. Design-dependent loads in topology optimization. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 19-48. doi : 10.1051/cocv:2002070. http://www.numdam.org/articles/10.1051/cocv:2002070/

[1] G. Alberti, Variational models for phase transitions, an approach via Γ-convergence, in Calculus of Variations and Partial Differential Equations, edited by G. Buttazzo et al. Springer-Verlag (2000) 95-114. | MR | Zbl

[2] G. Allaire, É. Bonnetier, G.A. Francfort and F. Jouve, Shape optimization by the homogenization method. Numer. Math. 76 (1997) 27-68. | MR | Zbl

[3] G. Allaire, Shape optimization by the homogenization method. Springer-Verlag, New York (2002). | MR | Zbl

[4] L. Ambrosio and G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Var. Partial Differential Equations 1 (1993) 55-69. | MR | Zbl

[5] H. Attouch, Variational convergence for functions and operators. Applicable Mathematics Series. Pitman (Advanced Publishing Program), Boston, Mass.-London (1984). | MR | Zbl

[6] S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990) 67-90. | Numdam | MR | Zbl

[7] A.C. Barroso and I. Fonseca, Anisotropic singular perturbations - the vectorial case. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 527-571. | MR | Zbl

[8] M.P. Bendsøe, Optimization of Structural Topology, Shape and Material. Springer Verlag, Berlin Heidelberg (1995). | MR | Zbl

[9] M.P. Bendsøe and O. Sigmund, Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69 (1999) 635-654. | Zbl

[10] É. Bonnetier and A. Chambolle, Computing the equilibrium configuration of epitaxially strained crystalline films. SIAM J. Appl. Math. 62 (2002) 1093-1121. | MR | Zbl

[11] B. Bourdin and A. Chambolle, Implementation of an adaptive finite-element approximation of the Mumford-Shah functional. Numer. Math. 85 (2000) 609-646. | MR | Zbl

[12] B. Bourdin, G.A. Francfort and J.-J. Marigo, Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48 (2000) 797-826. | MR | Zbl

[13] J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system I - interfacial free energy. J. Chem. Phys. 28 (1958) 258-267.

[14] A. Chambolle, Finite-differences discretizations of the Mumford-Shah functional. ESAIM: M2AN 33 (1999) 261-288. | Numdam | MR | Zbl

[15] B.-C. Chen and N. Kikuchi, Topology optimization with design-dependent loads. Finite Elem. Anal. Des. 37 (2001) 57-70. | Zbl

[16] L.Q. Chen and J. Shen, Application of semi implicit Fourier-spectral method to phase field equations. Comput. Phys. Comm. 108 (1998) 147-158. | Zbl

[17] A. Cherkaev, Variational methods for structural optimization. Springer-Verlag, New York (2000). | MR | Zbl

[18] A. Cherkaev and R.V. Kohn, Topics in the mathematical modelling of composite materials. Birkhäuser Boston Inc., Boston, MA (1997). | MR | Zbl

[19] P.G. Ciarlet, Mathematical elasticity. Vol. I. North-Holland Publishing Co., Amsterdam (1988). Three-dimensional elasticity. | MR | Zbl

[20] G. Dal Maso, An introduction to Γ-convergence. Birkhäuser, Boston (1993). | MR | Zbl

[21] I. Ekeland and R. Témam, Convex analysis and variational problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, English Edition (1999). Translated from the French. | MR | Zbl

[22] L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press, Boca Raton, FL (1992). | MR | Zbl

[23] D. Eyre, Systems of Cahn-Hilliard equations. SIAM J. Appl. Math. 53 (1993) 1686-1712. | MR | Zbl

[24] K.J. Falconer, The geometry of fractal sets. Cambridge University Press, Cambridge (1986). | MR | Zbl

[25] H. Federer, Geometric measure theory. Springer-Verlag, New York (1969). | MR | Zbl

[26] E. Giusti, Minimal surfaces and functions of bounded variation. Birkhäuser, Boston (1984). | MR | Zbl

[27] R.B. Haber, C.S. Jog and M.P. Bendsøe, A new approach to variable-topology shape design using a constraint on the perimeter. Struct. Optim. 11 (1996) 1-12.

[28] V.B. Hammer and N. Olhoff, Topology optimization of continuum structures subjected to pressure loading. Struct. Multidisc. Optim. 19 (2000) 85-92.

[29] R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems I-III. Comm. Pure Appl. Math. 39 (1986) 113-137, 139-182, 353-377. | MR | Zbl

[30] R.V. Kohn and G. Strang, Optimal design in elasticity and plasticity. Internat. J. Numer. Methods Engrg. 22 (1986) 183-188. | MR | Zbl

[31] P.H. Leo, J.S Lowengrub and H.J. Jou, A diffuse interface model for microstructural evolution in elastically stressed solids. Acta Mater. 46 (1998) 2113-2130.

[32] L. Modica and S. Mortola. Il limite nella Γ-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5) 14 (1977) 526-529. | MR | Zbl

[33] L. Modica and S. Mortola, Un esempio di Γ - -convergenza. Boll. Un. Mat. Ital. B (5) 14 (1977) 285-299. | MR | Zbl

[34] M. Negri, The anisotropy introduced by the mesh in the finite element approximation of the Mumford-Shah functional. Numer. Funct. Anal. Optim. 20 (1999) 957-982. | MR | Zbl

[35] R.H. Nochetto, S. Rovida, M. Paolini and C. Verdi, Variational approximation of the geometric motion of fronts, in Motion by mean curvature and related topics (Trento, 1992) de Gruyter, Berlin (1994) 124-149. | MR | Zbl

[36] S.J. Osher and F. Santosa, Level set methods for optimization problems involving geometry and constraints. I. Frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171 (2001) 272-288. | MR | Zbl

[37] M. Paolini and C. Verdi, Asympto. and numerical analyses of the mean curvature flow with a space-dependent relaxation parameter. Asymptot. Anal. 5 (1992) 553-574. | MR | Zbl

[38] J.A. Sethian and A. Wiegmann, Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163 (2000) 489-528. | MR | Zbl

[39] R. Temam, Problèmes mathématiques en plasticité. Gauthier-Villars, Paris (1983). | MR | Zbl

[40] W.P. Ziemer, Weakly Differentiable Functions. Springer-Verlag, Berlin (1989). | MR | Zbl

Cité par Sources :