We study the integral representation properties of limits of sequences of integral functionals like under nonstandard growth conditions of -type: namely, we assume that
Mots-clés : integral representation, $\Gamma $-convergence, nonstandard growth conditions
@article{COCV_2002__7__495_0, author = {Coscia, Alessandra and Mucci, Domenico}, title = {Integral representation and $\sf \Gamma $-convergence of variational integrals with ${p(x)}$-growth}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {495--519}, publisher = {EDP-Sciences}, volume = {7}, year = {2002}, doi = {10.1051/cocv:2002065}, mrnumber = {1925039}, zbl = {1036.49022}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2002065/} }
TY - JOUR AU - Coscia, Alessandra AU - Mucci, Domenico TI - Integral representation and $\sf \Gamma $-convergence of variational integrals with ${p(x)}$-growth JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 495 EP - 519 VL - 7 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2002065/ DO - 10.1051/cocv:2002065 LA - en ID - COCV_2002__7__495_0 ER -
%0 Journal Article %A Coscia, Alessandra %A Mucci, Domenico %T Integral representation and $\sf \Gamma $-convergence of variational integrals with ${p(x)}$-growth %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 495-519 %V 7 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2002065/ %R 10.1051/cocv:2002065 %G en %F COCV_2002__7__495_0
Coscia, Alessandra; Mucci, Domenico. Integral representation and $\sf \Gamma $-convergence of variational integrals with ${p(x)}$-growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 495-519. doi : 10.1051/cocv:2002065. http://www.numdam.org/articles/10.1051/cocv:2002065/
[1] Relaxation of convex functionals: The gap phenomenon. Ann. Inst. H. Poincaré (2003). | Numdam | Zbl
, and ,[2] Regularity results for a class of functionals with non standard growth. Arch. Rational Mech. Anal. 156 (2001) 121-140. | MR | Zbl
and ,[3] Regularity results for a class of quasiconvex functionals with non standard growth. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 XXX (2001) 311-339. | EuDML | Numdam | MR | Zbl
and ,[4] Sobolev spaces. Academic Press, New York (1975). | MR | Zbl
,[5] The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition. Differential Equations 33 (1998) 1653-1663. | MR | Zbl
,[6] The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. Roy. Soc. Edinburgh Ser. A 128 (1988) 463-479. | MR | Zbl
, and ,[7] Semicontinuity, relaxation and integral representation in the calculus of variations. Longman, Harlow, Pitman Res. Notes in Math. 207 (1989). | MR | Zbl
,[8] A characterization of nonlinear functionals on Sobolev spaces which admit an integral representation with a Carathéodory integrand. J. Math. Pures Appl. 64 (1985) 337-361. | MR | Zbl
and ,[9] Integral representation and relaxation of local functionals. Nonlinear Anal. 9 (1985) 515-532. | MR | Zbl
and ,[10] Homogenization of multiple integrals. Oxford University Press, Oxford, Oxford Lecture Ser. in Maths. and its Appl. 12 (1998). | MR | Zbl
and ,[11] Some properties of -limits of integral functionals. Ann. Mat. Pura Appl. (iv) 122 (1979) 1-60. | MR | Zbl
and ,[12] Hölder continuity of minimizers of functionals with variable growth exponent. Manuscripta Math. 93 (1997) 283-299. | EuDML | MR | Zbl
and ,[13] Hölder continuity of the gradient of -harmonic mappings. C. R. Acad. Sci. Paris 328 (1999) 363-368. | MR | Zbl
and ,[14] An introduction to -convergence. Birkäuser, Boston, Prog. Nonlinear Differential Equations Appl. 8 (1993). | MR | Zbl
,[15] A general theory for variational functionals. Quaderno S.N.S. Pisa, Topics in Funct. Anal. (1982). | MR | Zbl
and ,[16] Sulla convergenza di alcune successioni di integrali di tipo dell'area. Rend. Mat. Univ. Roma 8 (1975) 277-294. | Zbl
,[17] Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 58 (1975) 842-850. | MR | Zbl
and ,[18] Une notion générale de convergence faible pour des fonctions croissantes d'ensemble. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1977) 61-99. | EuDML | Numdam | Zbl
and ,[19] Convex analysis and variational problems. North Holland, Amsterdam (1978). | MR | Zbl
and ,[20] A class of De Giorgi type and Hölder continuity. Nonlinear Anal. T.M.A. 36 (1999) 295-318. | MR | Zbl
and ,[21] On the convergence of integral functionals depending on vector-valued functions. Ricerche Mat. 32 (1983) 321-339. | MR | Zbl
,[22] Regularity and existence of solutions of elliptic equations with -growth conditions. J. Differential Equations 90 (1991) 1-30. | MR | Zbl
,[23] Regularity for some scalar variational problems under general growth conditions. J. Optim. Theory Appl. 90 (1996) 161-181. | MR | Zbl
,[24] Quasi-convexity and semicontinuity of multiple integrals. Pacific J. Math. 2 (1952) 25-53. | MR | Zbl
,[25] Mathematical modelling of electrorheological fluids. Cont. Mech. Therm. 13 (2001) 59-78. | Zbl
and ,[26] Electrorheological fluids: Modeling and mathematical theory. Springer, Berlin, Lecture Notes in Math. 1748 (2000). | MR | Zbl
,[27] On the passage to the limit in nonlinear variational problems. Russian Acad. Sci. Sb. Math. 76 (1993) 427-459. | MR | Zbl
,[28] On Lavrentiev's phenomenon. Russian J. Math. Phys. 3 (1995) 249-269. | Zbl
,[29] On some variational problems. Russian J. Math. Phys. 5 (1997) 105-116. | MR | Zbl
,[30] Meyers type estimates for solving the non linear Stokes system. Differential Equations 33 (1997) 107-114. | MR | Zbl
,[31] Homogenization of differential operators and integral functionals. Springer, Berlin (1994). | MR | Zbl
, and ,Cité par Sources :