Tracking with prescribed transient behaviour
ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 471-493.

Universal tracking control is investigated in the context of a class 𝒮 of M-input, M-output dynamical systems modelled by functional differential equations. The class encompasses a wide variety of nonlinear and infinite-dimensional systems and contains - as a prototype subclass - all finite-dimensional linear single-input single-output minimum-phase systems with positive high-frequency gain. The control objective is to ensure that, for an arbitrary M -valued reference signal r of class W 1, (absolutely continuous and bounded with essentially bounded derivative) and every system of class 𝒮, the tracking error e between plant output and reference signal evolves within a prespecified performance envelope or funnel in the sense that ϕ(t)e(t)<1 for all t0, where ϕ a prescribed real-valued function of class W 1, with the property that ϕ(s)>0 for all s>0 and lim inf s ϕ(s)>0. A simple (neither adaptive nor dynamic) error feedback control of the form u(t)=-α(ϕ(t)e(t))e(t) is introduced which achieves the objective whilst maintaining boundedness of the control and of the scalar gain α(ϕ(·)e(·)).

DOI : 10.1051/cocv:2002064
Classification : 93D15, 93C30, 34K20
Mots-clés : nonlinear systems, functional differential equations, feedback control, tracking, transient behaviour
@article{COCV_2002__7__471_0,
     author = {Ilchmann, Achim and Ryan, E. P. and Sangwin, C. J.},
     title = {Tracking with prescribed transient behaviour},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {471--493},
     publisher = {EDP-Sciences},
     volume = {7},
     year = {2002},
     doi = {10.1051/cocv:2002064},
     mrnumber = {1925038},
     zbl = {1044.93022},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2002064/}
}
TY  - JOUR
AU  - Ilchmann, Achim
AU  - Ryan, E. P.
AU  - Sangwin, C. J.
TI  - Tracking with prescribed transient behaviour
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2002
SP  - 471
EP  - 493
VL  - 7
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2002064/
DO  - 10.1051/cocv:2002064
LA  - en
ID  - COCV_2002__7__471_0
ER  - 
%0 Journal Article
%A Ilchmann, Achim
%A Ryan, E. P.
%A Sangwin, C. J.
%T Tracking with prescribed transient behaviour
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2002
%P 471-493
%V 7
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2002064/
%R 10.1051/cocv:2002064
%G en
%F COCV_2002__7__471_0
Ilchmann, Achim; Ryan, E. P.; Sangwin, C. J. Tracking with prescribed transient behaviour. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 471-493. doi : 10.1051/cocv:2002064. http://www.numdam.org/articles/10.1051/cocv:2002064/

[1] C.I. Byrnes and J.C. Willems, Adaptive stabilization of multivariable linear systems, in Proc. 23rd Conf. on Decision and Control. Las Vegas (1984) 1574-1577.

[2] A. Ilchmann, E.P. Ryan and C.J. Sangwin, Systems of controlled functional differential equations and adaptive tracking. SIAM J. Control Optim. 40 (2002) 1746-1764. | MR | Zbl

[3] H. Logemann and A.D. Mawby, Low-gain integral control of infinite dimensional regular linear systems subject to input hysteresis, in Advances in Mathematical Systems Theory, edited by F. Colonius, U. Helmke, D. Prätzel-Wolters and F. Wirth. Birkhäuser Verlag, Boston, Basel, Berlin (2000) 255-293.

[4] D.E. Miller and E.J. Davison, An adaptive controller which provides an arbitrarily good transient and steady-state response. IEEE Trans. Automat. Control 36 (1991) 68-81. | MR | Zbl

[5] E.P. Ryan and C.J. Sangwin, Controlled functional differential equations and adaptive stabilization. Int. J. Control 74 (2001) 77-90. | MR | Zbl

[6] E.D. Sontag, Smooth stabilization implies coprime factorization. IEEE Trans. Automat. Control 34 (1989) 435-443. | MR | Zbl

[7] C. Sparrow, The Lorenz equations: Bifurcations, chaos and strange attractors. Springer-Verlag, New York (1982). | MR | Zbl

[8] G. Weiss, Transfer functions of regular linear systems, Part 1: Characterization of regularity. Trans. Amer. Math. Soc. 342 (1994) 827-854. | MR | Zbl

Cité par Sources :