We prove the existence of positive and of nodal solutions for , , where and , for a class of open subsets of lying between two infinite cylinders.
Mots clés : nodal solutions, cylindrical domains, semilinear elliptic equation, critical Sobolev exponent, concentration-compactness
@article{COCV_2002__7__407_0, author = {Gir\~ao, Pedro and Ramos, Miguel}, title = {Sign changing solutions for elliptic equations with critical growth in cylinder type domains}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {407--419}, publisher = {EDP-Sciences}, volume = {7}, year = {2002}, doi = {10.1051/cocv:2002061}, mrnumber = {1925035}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2002061/} }
TY - JOUR AU - Girão, Pedro AU - Ramos, Miguel TI - Sign changing solutions for elliptic equations with critical growth in cylinder type domains JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 407 EP - 419 VL - 7 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2002061/ DO - 10.1051/cocv:2002061 LA - en ID - COCV_2002__7__407_0 ER -
%0 Journal Article %A Girão, Pedro %A Ramos, Miguel %T Sign changing solutions for elliptic equations with critical growth in cylinder type domains %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 407-419 %V 7 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2002061/ %R 10.1051/cocv:2002061 %G en %F COCV_2002__7__407_0
Girão, Pedro; Ramos, Miguel. Sign changing solutions for elliptic equations with critical growth in cylinder type domains. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 407-419. doi : 10.1051/cocv:2002061. http://www.numdam.org/articles/10.1051/cocv:2002061/
[1] Extrema problems with critical Sobolev exponents on unbounded domains. Nonlinear Anal. TMA 26 (1996) 823-833. | Zbl
, and ,[2] On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent. Nonlinear Anal. TMA 25 (1995) 41-59. | MR | Zbl
, and ,[3] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36 (1983) 437-476. | MR | Zbl
and ,[4] Some existence results for superlinear elliptic boundary value problems involving critical exponents. J. Funct. Anal. 69 (1986) 289-306. | MR | Zbl
, and ,[5] Least energy solutions for elliptic equations in unbounded domains. Proc. Roy. Soc. Edinburgh Sect. A 126 (1996) 195-208. | MR | Zbl
and ,[6] Elliptic partial differential equations of second order, Second Edition. Springer, New York, Grundlehren Math. Wiss. 224 (1983). | MR | Zbl
and ,[7] The concentration-compactness principle in the Calculus of Variations. The limit case, Part 2. Rev. Mat. Iberoamericana 1 (1985) 45-121. | MR | Zbl
,[8] Positive solutions for elliptic equations with critical growth in unbounded domains, in Calculus of Variations and Differential Equations, edited by A. Ioffe, S. Reich and I. Shafrir. Chapman & Hall/CRC, Boca Raton, FL, Res. Notes in Math. Ser. 140 (2000) 192-199. | MR | Zbl
, and ,[9] Abstract concentration compactness and elliptic equations on unbounded domains, in Prog. Nonlinear Differential Equations Appl., Vol. 43, edited by M.R. Grossinho, M. Ramos, C. Rebelo and L. Sanchez. Birkhäuser, Boston (2001) 369-380. | MR | Zbl
and ,[10] Nodal solutions of semilinear elliptic equations with critical exponent. Differential Integral Equations 5 (1992) 25-42. | MR | Zbl
,[11] Minimax theorems, in Prog. Nonlinear Differential Equations Appl., Vol. 24. Birkhäuser, Boston (1996). | MR | Zbl
,[12] Multiple entire solutions of a semilinear elliptic equations. Nonlinear Anal. TMA 12 (1998) 1297-1316. | MR | Zbl
,Cité par Sources :