We study the homogenization of the compressible Navier-Stokes system in a periodic porous medium (of period ) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.
Mots clés : compressible Navier-Stokes, homogenization, porous medium equation
@article{COCV_2002__8__885_0, author = {Masmoudi, Nader}, title = {Homogenization of the compressible {Navier-Stokes} equations in a porous medium}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {885--906}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002053}, zbl = {1071.76047}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2002053/} }
TY - JOUR AU - Masmoudi, Nader TI - Homogenization of the compressible Navier-Stokes equations in a porous medium JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 885 EP - 906 VL - 8 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2002053/ DO - 10.1051/cocv:2002053 LA - en ID - COCV_2002__8__885_0 ER -
%0 Journal Article %A Masmoudi, Nader %T Homogenization of the compressible Navier-Stokes equations in a porous medium %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 885-906 %V 8 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2002053/ %R 10.1051/cocv:2002053 %G en %F COCV_2002__8__885_0
Masmoudi, Nader. Homogenization of the compressible Navier-Stokes equations in a porous medium. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 885-906. doi : 10.1051/cocv:2002053. http://www.numdam.org/articles/10.1051/cocv:2002053/
[1] Homogenization of the Stokes flow in a connected porous medium. Asymptot. Anal. 2 (1989) 203-222. | MR | Zbl
,[2] Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. | MR | Zbl
,[3] Homogenization of the unsteady Stokes equations in porous media, in Progress in partial differential equations: Calculus of variations, applications, Pont-à-Mousson, 1991. Longman Sci. Tech., Harlow (1992) 109-123. | MR | Zbl
,[4] Asymptotic analysis for periodic structures. North-Holland Publishing Co., Amsterdam (1978). | MR | Zbl
, and ,[5] Solutions of some problems of vector analysis, associated with the operators and , in Theory of cubature formulas and the application of functional analysis to problems of mathematical physics. Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat., Novosibirsk (1980) 5-40, 149. | MR
,[6] Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31 (1961) 308-340. | Numdam | MR | Zbl
,[7] Les fontaines publiques de la ville de Dijon. Dalmont Paris (1856).
,[8] Two problems in homogenization of porous media, in Proc. of the Second International Seminar on Geometry, Continua and Microstructure, Getafe, 1998, Vol. 14 (1999) 141-155. | MR | Zbl
,[9] On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Comment. Math. Univ. Carolin. 42 (2001) 83-98. | Zbl
,[10] An introduction to the mathematical theory of the Navier-Stokes equations, Vol. I. Springer-Verlag, New York (1994). Linearized steady problems. | Zbl
,[11] Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod (1969). | MR | Zbl
,[12] Some methods in the mathematical analysis of systems and their control. Kexue Chubanshe (Science Press), Beijing (1981). | MR | Zbl
,[13] Mathematical topics in fluid mechanics, Vol. 1. The Clarendon Press Oxford University Press, New York (1996). Incompressible models, Oxford Science Publications. | MR | Zbl
,[14] Mathematical topics in fluid mechanics, Vol. 2. The Clarendon Press Oxford University Press, New York (1998). Compressible models, Oxford Science Publications. | MR | Zbl
,[15] Darcy's law for slow viscous flow past a stationary array of bubbles. Proc. Roy. Soc. Edinburgh Sect. A 114 (1990) 71-79. | Zbl
and ,[16]
(in preparation).[17] Homogenization of nonstationary Navier-Stokes equations in a domain with a grained boundary. Ann. Mat. Pura Appl. (4) 158 (1991) 167-179. | Zbl
,[18] A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608-623. | MR | Zbl
,[19] Asymptotic analysis for a stiff variational problem arising in mechanics. SIAM J. Math. Anal. 21 (1990) 1394-1414. | MR | Zbl
,[20] Nonhomogeneous media and vibration theory. Springer-Verlag, Berlin (1980). | Zbl
,[21] Incompressible fluid flow in a porous medium: convergence of the homogenization process, in Nonhomogeneous media and vibration theory, edited by E. Sánchez-Palencia (1980) 368-377.
,[22] Navier-Stokes equations and nonlinear functional analysis. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, Second Edition (1995). | Zbl
,Cité par Sources :