Let be a non-negative function of class from to , which vanishes exactly at two points and . Let be the set of functions of a real variable which tend to at and to at and whose one dimensional energy
Mots-clés : heteroclinic connections, Ginzburg-Landau, elliptic systems in unbounded domains, non convex optimization
@article{COCV_2002__8__965_0, author = {Schatzman, Michelle}, title = {Asymmetric heteroclinic double layers}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {965--1005}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002039}, mrnumber = {1932983}, zbl = {1092.35030}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2002039/} }
TY - JOUR AU - Schatzman, Michelle TI - Asymmetric heteroclinic double layers JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 965 EP - 1005 VL - 8 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2002039/ DO - 10.1051/cocv:2002039 LA - en ID - COCV_2002__8__965_0 ER -
Schatzman, Michelle. Asymmetric heteroclinic double layers. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 965-1005. doi : 10.1051/cocv:2002039. http://www.numdam.org/articles/10.1051/cocv:2002039/
[1] Stationary layered solutions in for an Allen-Cahn system with multiple well potential. Calc. Var. Partial Diff. Eqs. 5 (1997) 359-390. | Zbl
, and ,[2] The gradient theory of phase transitions for systems with two potential wells. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) 89-102. | MR | Zbl
and ,[3] The gradient theory of the phase transitions in Cahn-Hilliard fluids with Dirichlet boundary conditions. SIAM J. Math. Anal. 27 (1996) 620-637. | Zbl
,[4] Perturbation theory for linear operators. Springer-Verlag, Berlin (1995). Reprint of the 1980 edition. | MR | Zbl
,[5] Physique statistique. Ellipses (1994).
and ,[6] Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968). Travaux et Recherches Mathématiques, No. 17. | MR | Zbl
and ,[7] The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123-142. | MR | Zbl
,[8] Gradient theory of phase transitions with boundary contact energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987) 487-512. | Numdam | MR | Zbl
,[9] Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition. Proc. Roy. Soc. London Ser. A 429 (1990) 505-532. | MR | Zbl
, and ,[10] Methods of modern mathematical physics. I. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, Second Edition (1980). Functional analysis. | MR | Zbl
and ,[11] Vector-valued local minimizers of nonconvex variational problems. Rocky Mountain J. Math. 21 (1991) 799-807. Current directions in nonlinear partial differential equations. Provo, UT (1987). | MR | Zbl
,[12] Traveling wave solutions of parabolic systems. American Mathematical Society, Providence, RI, 1994. Translated from the Russian manuscript by James F. Heyda. | MR | Zbl
, and ,Cité par Sources :