We prove uniqueness of the invariant measure and the exponential convergence to equilibrium for a stochastic dissipative system whose drift is perturbed by a bounded function.
Mots-clés : stochastic systems, reaction-diffusion equations, invariant measures
@article{COCV_2002__8__587_0, author = {Prato, Giuseppe Da}, title = {Asymptotic behaviour of stochastic quasi dissipative systems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {587--602}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002038}, mrnumber = {1932964}, zbl = {1064.47047}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2002038/} }
TY - JOUR AU - Prato, Giuseppe Da TI - Asymptotic behaviour of stochastic quasi dissipative systems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 587 EP - 602 VL - 8 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2002038/ DO - 10.1051/cocv:2002038 LA - en ID - COCV_2002__8__587_0 ER -
%0 Journal Article %A Prato, Giuseppe Da %T Asymptotic behaviour of stochastic quasi dissipative systems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 587-602 %V 8 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2002038/ %R 10.1051/cocv:2002038 %G en %F COCV_2002__8__587_0
Prato, Giuseppe Da. Asymptotic behaviour of stochastic quasi dissipative systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 587-602. doi : 10.1051/cocv:2002038. http://www.numdam.org/articles/10.1051/cocv:2002038/
[1] Large deviations and the Malliavin Calculus. Birkhäuser (1984). | MR | Zbl
,[2] Opérateurs maximaux monotones. North-Holland, Amsterdam (1973).
,[3] A Hille-Yosida theorem for weakly continuous semigroups. Semigroup Forum 49 (1994) 349-367. | Zbl
,[4] Second order PDE's in finite and infinite dimensions. A probabilistic approach. Springer, Lecture Notes in Math. 1762 (2001). | Zbl
,[5] Optimal control problems for stochastic reaction-diffusion systems with non Lipschitz coefficients. SIAM J. Control Optim. 39 (2001) 1779-1816. | MR | Zbl
,[6] Stationary Hamilton-Jacobi equations in Hilbert spaces and applications to a stochastic optimal control problem. SIAM J. Control Optim. (to appear). | Zbl
,[7] Stochastic evolution equations by semigroups methods. Centre de Recerca Matematica, Barcelona, Quaderns 11 (1998).
,[8] Invariant measures of non symmetric dissipative stochastic systems. Probab. Theor. Related Fields (to appear). | MR
, and ,[9] Strong Feller property for stochastic semilinear equations. Stochastic Anal. Appl. 13 (1995) 35-45. | MR | Zbl
, and ,[10] Singular dissipative stochastic equations in Hilbert spaces, Preprint. S.N.S. Pisa (2001). | MR | Zbl
and ,[11] Stochastic equations in infinite dimensions. Cambridge University Press (1992). | MR | Zbl
and ,[12] Ergodicity for Infinite Dimensional Systems. Cambridge University Press, London Math. Soc. Lecture Notes 229 (1996). | MR | Zbl
and ,[13] Differentiability of the Feynman-Kac semigroup and a control application. Rend. Mat. Accad. Lincei. 8 (1997) 183-188. | Zbl
and ,[14] Markov Processes, Vol. I. Springer-Verlag (1965). | Zbl
,[15] Stochastic flows on Riemannian manifolds, edited by M.A. Pinsky and V. Wihstutz. Birkhäuser, Diffusion Processes and Related Problems in Analysis II (1992) 33-72. | MR | Zbl
,[16] Controlled Markov processes and viscosity solutions. Springer-Verlag (1993). | MR | Zbl
and ,[17] Nonlinear semigroups and evolution equations. J. Math. Soc. Japan 10 (1967) 508-520. | MR | Zbl
,[18] Probability measures on metric spaces. Academic Press (1967). | MR | Zbl
,Cité par Sources :