Control of transonic shock positions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 907-914.

We wish to show how the shock position in a nozzle could be controlled. Optimal control theory and algorithm is applied to the transonic equation. The difficulty is that the derivative with respect to the shock position involves a Dirac mass. The one dimensional case is solved, the two dimensional one is analyzed .

DOI : 10.1051/cocv:2002034
Classification : 35, 65, 76, 93
Mots-clés : partial differential equations, control, calculus of variation, nozzle flow, sensitivity, transonic equation
@article{COCV_2002__8__907_0,
     author = {Pironneau, Olivier},
     title = {Control of transonic shock positions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {907--914},
     publisher = {EDP-Sciences},
     volume = {8},
     year = {2002},
     doi = {10.1051/cocv:2002034},
     mrnumber = {1932979},
     zbl = {1069.35043},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2002034/}
}
TY  - JOUR
AU  - Pironneau, Olivier
TI  - Control of transonic shock positions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2002
SP  - 907
EP  - 914
VL  - 8
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2002034/
DO  - 10.1051/cocv:2002034
LA  - en
ID  - COCV_2002__8__907_0
ER  - 
%0 Journal Article
%A Pironneau, Olivier
%T Control of transonic shock positions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2002
%P 907-914
%V 8
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2002034/
%R 10.1051/cocv:2002034
%G en
%F COCV_2002__8__907_0
Pironneau, Olivier. Control of transonic shock positions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 907-914. doi : 10.1051/cocv:2002034. http://www.numdam.org/articles/10.1051/cocv:2002034/

[1] F. Hecht, H. Kawarada, C. Bernardi, V. Girault and O. Pironneau, A finite element problem issued from fictitious domain techniques. East-West J. Appl. Math. (2002). | MR | Zbl

[2] M. Olazabal, E. Godlewski and P.A. Raviart, On the linearization of hyperbolic systems of conservation laws. Application to stability, in Équations aux dérivées partielles et applications. Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris (1998) 549-570. | MR | Zbl

[3] J. Nečas, Écoulements de fluide : compacité par entropie. Masson, Paris (1989). | MR | Zbl

[4] L. Landau and F. Lifschitz, Fluid mechanics. MIR Editions, Moscow (1956).

[5] M.A. Giles and N.A. Pierce, Analytic adjoint solutions for the quasi-one-dimensional euler equations. J. Fluid Mech. 426 (2001) 327-345. | MR | Zbl

[6] B. Mohammadi, Contrôle d'instationnarités en couplage fluide-structure. C. R. Acad. Sci. Sér. IIb Phys. Mécanique, astronomie 327 (1999) 115-118. | Zbl

[7] N. Di Cesare and O. Pironneau, Shock sensitivity analysis. Comput. Fluid Dynam. J. 9 (2000) 1-15.

[8] R. Glowinski, Numerical methods for nonlinear variational problems. Springer-Verlag, New York (1984). | MR | Zbl

Cité par Sources :