Dans ce papier nous prouvons que si une solution de KdV est suffisamment décroissante à l’infini (c’est-à-dire comme e où ) et si la donnée de Cauchy est nulle pour assez grand alors la solution est nulle. Ce résultat est la conséquence d’une inégalité de Carleman adaptée à la décroissance de la solution à l’infini.
In this paper we prove that if a solution of KdV equation decreases fast enough (i.e. like e where ) and if the Cauchy data is null for large enough then the solution is zero. We prove a Carleman’s estimate and the uniqueness result follows.
Mots clés : Korteweg de Vries, unicité, inégalité de Carleman
@article{COCV_2002__8__933_0, author = {Robbiano, Luc}, title = {Unicit\'e forte \`a l'infini pour {KdV}}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {933--939}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002031}, zbl = {1070.35506}, language = {fr}, url = {http://www.numdam.org/articles/10.1051/cocv:2002031/} }
TY - JOUR AU - Robbiano, Luc TI - Unicité forte à l'infini pour KdV JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 933 EP - 939 VL - 8 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2002031/ DO - 10.1051/cocv:2002031 LA - fr ID - COCV_2002__8__933_0 ER -
Robbiano, Luc. Unicité forte à l'infini pour KdV. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 933-939. doi : 10.1051/cocv:2002031. http://www.numdam.org/articles/10.1051/cocv:2002031/
[1] Non-unicité du problème de Cauchy. Ann. of Math. 117 (1983) 77-108. | MR | Zbl
,[2] A nonuniqueness result for operators of principal type. Math. Z. 220 (1995) 561-568. | MR | Zbl
et ,[3] Unique continuation of solutions of partial differential equations and inequalities from manifolds of any dimension. Duke Math. J. 45 (1978) 1-13. | MR | Zbl
et ,[4] On the compactness of the support of solutions of dispersive equations. Internat. Math. Res. Notices 9 (1997) 437-447. | MR | Zbl
,[5] The Fefferman-Phong inequality in the locally temperate Weyl calculus. Osaka J. Math. 33 (1996) 847-861. | Zbl
, et ,[6] Controllability of evolution equations. Lecture Notes Ser. 34. Seoul National University, Research Institute of Mathematics. Global Analysis Research Center, Seoul (1996). | MR | Zbl
et ,[7] On the support of solutions to the generalized KdV equation. Ann. Inst. H. Poincaré 19 (2002) 191-208. | Numdam | MR | Zbl
, et ,[8] Unicité et non unicité du problème de Cauchy pour une classe d'opérateurs différentiels à caractéristiques doubles. Duke Math. J. 49 (1982) 137-162. | Zbl
et ,[9] Unique continuation for some evolution equations. J. Differential Equations 66 (1987) 118-139. | MR | Zbl
et ,[10] Analytic solutions of Korteweg-de Vries equation (prépublication).
,Cité par Sources :