Control of the wave equation by time-dependent coefficient
ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 375-392.

We study an initial boundary-value problem for a wave equation with time-dependent sound speed. In the control problem, we wish to determine a sound-speed function which damps the vibration of the system. We consider the case where the sound speed can take on only two values, and propose a simple control law. We show that if the number of modes in the vibration is finite, and none of the eigenfrequencies are repeated, the proposed control law does lead to energy decay. We illustrate the rich behavior of this problem in numerical examples.

DOI : 10.1051/cocv:2002029
Classification : 35K35, 35B37, 49J15, 49J20
Mots-clés : control problem, time dependent wave equation, damping
@article{COCV_2002__8__375_0,
     author = {Chambolle, Antonin and Santosa, Fadil},
     title = {Control of the wave equation by time-dependent coefficient},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {375--392},
     publisher = {EDP-Sciences},
     volume = {8},
     year = {2002},
     doi = {10.1051/cocv:2002029},
     mrnumber = {1932956},
     zbl = {1073.35032},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2002029/}
}
TY  - JOUR
AU  - Chambolle, Antonin
AU  - Santosa, Fadil
TI  - Control of the wave equation by time-dependent coefficient
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2002
SP  - 375
EP  - 392
VL  - 8
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2002029/
DO  - 10.1051/cocv:2002029
LA  - en
ID  - COCV_2002__8__375_0
ER  - 
%0 Journal Article
%A Chambolle, Antonin
%A Santosa, Fadil
%T Control of the wave equation by time-dependent coefficient
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2002
%P 375-392
%V 8
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2002029/
%R 10.1051/cocv:2002029
%G en
%F COCV_2002__8__375_0
Chambolle, Antonin; Santosa, Fadil. Control of the wave equation by time-dependent coefficient. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 375-392. doi : 10.1051/cocv:2002029. http://www.numdam.org/articles/10.1051/cocv:2002029/

[1] P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent. Math. 108 (1992) 247-262. | Zbl

[2] P. Destuynder and A. Saidi, Smart materials and flexible structures. Control Cybernet. 26 (1997) 161-205. | MR | Zbl

[3] G. Haritos and A. Srinivasan, Smart Structures and Materials. ASME, New York, ASME, AD 24 (1991).

[4] H. Janocha, Adaptronics and Smart Structures. Springer, New York (1999).

[5] K. Lurié, Control in the coefficients of linear hyperbolic equations via spatio-temporal components, in Homogenization. World Science Publishing, River Ridge, NJ, Ser. Adv. Math. Appl. Sci. 50 (1999) 285-315. | MR | Zbl

[6] S. Pohozaev, On a class of quasilinear hyperbolic equations. Math. USSR Sbornik 25 (1975) 145-158. | Zbl

[7] J. Restorff, Magnetostrictive materials and devices, in Encyclopedia of Applied Physics, Vol. 9. VCH Publishers (1994).

Cité par Sources :