Relaxation of quasilinear elliptic systems via A-quasiconvex envelopes
ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 309-334.

We consider the weak closure WZ of the set Z of all feasible pairs (solution, flow) of the family of potential elliptic systems

div s = 1 s 0 σ s ( x ) F s ' ( u ( x ) + g ( x ) ) - f ( x ) = 0 in Ω , u = ( u 1 , , u m ) H 0 1 ( Ω ; 𝐑 m ) , σ = ( σ 1 , , σ s 0 ) S ,
where Ω𝐑 n is a bounded Lipschitz domain, F s are strictly convex smooth functions with quadratic growth and S = { σ measurable σ s ( x ) = 0 or 1 , s = 1 , , s 0 , σ 1 ( x ) + + σ s 0 ( x ) = 1 } . We show that WZ is the zero level set for an integral functional with the integrand Q being the 𝐀-quasiconvex envelope for a certain function and the operator 𝐀=(curl,div) m . If the functions F s are isotropic, then on the characteristic cone Λ (defined by the operator 𝐀) Q coincides with the 𝐀-polyconvex envelope of and can be computed by means of rank-one laminates.

DOI : 10.1051/cocv:2002014
Classification : 49J45
Mots-clés : quasilinear elliptic system, relaxation, A-quasiconvex envelope
@article{COCV_2002__7__309_0,
     author = {Raitums, Uldis},
     title = {Relaxation of quasilinear elliptic systems via {A-quasiconvex} envelopes},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {309--334},
     publisher = {EDP-Sciences},
     volume = {7},
     year = {2002},
     doi = {10.1051/cocv:2002014},
     mrnumber = {1925032},
     zbl = {1037.49011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2002014/}
}
TY  - JOUR
AU  - Raitums, Uldis
TI  - Relaxation of quasilinear elliptic systems via A-quasiconvex envelopes
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2002
SP  - 309
EP  - 334
VL  - 7
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2002014/
DO  - 10.1051/cocv:2002014
LA  - en
ID  - COCV_2002__7__309_0
ER  - 
%0 Journal Article
%A Raitums, Uldis
%T Relaxation of quasilinear elliptic systems via A-quasiconvex envelopes
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2002
%P 309-334
%V 7
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv:2002014/
%R 10.1051/cocv:2002014
%G en
%F COCV_2002__7__309_0
Raitums, Uldis. Relaxation of quasilinear elliptic systems via A-quasiconvex envelopes. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 309-334. doi : 10.1051/cocv:2002014. http://www.numdam.org/articles/10.1051/cocv:2002014/

[1] J. Ball, B. Kirchheim and J. Kristensen, Regularity of quasiconvex envelopes, Preprint No. 72/1999. Max-Planck Institute für Mathematik in der Naturwissenschaften, Leipzig (1999). | MR | Zbl

[2] B. Dacorogna, Direct Methods in the Calculus of Variations. Springer: Berlin, Heidelberg, New York (1989). | MR | Zbl

[3] I. Fonseca and S. Müller, A-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30 (1999) 1355-1390. | MR | Zbl

[4] R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems, Parts I-III. Comm. Pure Appl. Math. 39 (1986) 113-137, 138-182, 353-377. | Zbl

[5] K.A. Lurie, A.V. Fedorov and A.V. Cherkaev, Regularization of optimal problems of design of bars and plates, Parts 1 and 2. JOTA 37 (1982) 499-543. | MR | Zbl

[6] M. Miettinen and U. Raitums, On C 1 -regularity of functions that define G-closure. Z. Anal. Anwendungen 20 (2001) 203-214. | MR | Zbl

[7] F. Murat, Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Super. Pisa 8 (1981) 69-102. | Numdam | MR | Zbl

[8] U. Raitums, Properties of optimal control problems for elliptic equations, edited by W. Jäger et al., Partial Differential Equations Theory and Numerical Solutions. Boca Raton: Chapman & Hall/CRC, Res. Notes in Math. 406 (2000) 290-297. | MR | Zbl

[9] L. Tartar, An introduction to the homogenization method in optimal design. CIME Summer Course. Troia (1998). http://www.math.cmu.edu/cna/publications.html | Zbl

[10] V.V. Zhikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer: Berlin, Hedelberg, New York (1994). | MR | Zbl

Cité par Sources :