In this article, we report the results we obtained when investigating the numerical solution of some nonlinear eigenvalue problems for the Monge-Ampère operator v → det D2v. The methodology we employ relies on the following ingredients: (i) a divergence formulation of the eigenvalue problems under consideration. (ii) The time discretization by operator-splitting of an initial value problem (a kind of gradient flow) associated with each eigenvalue problem. (iii) A finite element approximation relying on spaces of continuous piecewise affine functions. To validate the above methodology, we applied it to the solution of problems with known exact solutions: The results we obtained suggest convergence to the exact solution when the space discretization step h → 0. We considered also test problems with no known exact solutions.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2020072
Mots-clés : Monge-Ampère equation, nonlinear eigenvalue problems, operator-splitting methods, finite element approximations
@article{COCV_2020__26_1_A118_0, author = {Glowinski, Roland and Leung, Shingyu and Liu, Hao and Qian, Jianliang}, editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinsk, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.}, title = {On the numerical solution of nonlinear eigenvalue problems for the {Monge-Amp\`ere} operator}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {26}, year = {2020}, doi = {10.1051/cocv/2020072}, mrnumber = {4188832}, zbl = {1460.35183}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2020072/} }
TY - JOUR AU - Glowinski, Roland AU - Leung, Shingyu AU - Liu, Hao AU - Qian, Jianliang ED - Buttazzo, G. ED - Casas, E. ED - de Teresa, L. ED - Glowinsk, R. ED - Leugering, G. ED - Trélat, E. ED - Zhang, X. TI - On the numerical solution of nonlinear eigenvalue problems for the Monge-Ampère operator JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2020 VL - 26 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2020072/ DO - 10.1051/cocv/2020072 LA - en ID - COCV_2020__26_1_A118_0 ER -
%0 Journal Article %A Glowinski, Roland %A Leung, Shingyu %A Liu, Hao %A Qian, Jianliang %E Buttazzo, G. %E Casas, E. %E de Teresa, L. %E Glowinsk, R. %E Leugering, G. %E Trélat, E. %E Zhang, X. %T On the numerical solution of nonlinear eigenvalue problems for the Monge-Ampère operator %J ESAIM: Control, Optimisation and Calculus of Variations %D 2020 %V 26 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2020072/ %R 10.1051/cocv/2020072 %G en %F COCV_2020__26_1_A118_0
Glowinski, Roland; Leung, Shingyu; Liu, Hao; Qian, Jianliang. On the numerical solution of nonlinear eigenvalue problems for the Monge-Ampère operator. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 118. doi : 10.1051/cocv/2020072. http://www.numdam.org/articles/10.1051/cocv/2020072/
[1] Mathematical Problems from Combustion Theory. Springer Science & Business Media (2013). | MR | Zbl
and ,[2] Linear and Nonlinear Functional Analysis with Applications. SIAM, Philadelphia, PA (2013). | DOI | MR | Zbl
,[3] Generalized derivatives and nonsmooth optimization, a finite dimensional tour. Sociedad de Estatistica e Investigacion Operativa Top 13 (2005) 185–279. | MR | Zbl
,[4] A finite element/operator-splitting method for the numerical solution of the two dimensional elliptic Monge-Ampère equation. J. Sci. Comput. 79 (2019) 1–47. | DOI | MR | Zbl
, , and ,[5] Splitting Methods in Communication, Imaging, Science, and Engineering. Springer, Switzerland (2017). | MR | Zbl
, and ,[6] The eigenvalue problem for the Monge-Ampère operator on general bounded convex domains. Ann. Sc. Norm. Sup. Pisa, Cl Sci. 18 (2018) 1519–1559. | MR | Zbl
,[7] Two remarks on Monge-Ampère equations. Ann. Mat. Pura Appl. 142 (1985) 263–275. | DOI | MR | Zbl
,[8] A finite element/operator-splitting method for the numerical solution of the three dimensional Monge-Ampère equation. J. Sci. Comput. 81 (2019) 2271–2302. | DOI | MR | Zbl
, , and ,Cité par Sources :
Dedicated to Enrique Zuazua on the occasion of his 60th birthday.