On the numerical solution of nonlinear eigenvalue problems for the Monge-Ampère operator
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 118.

In this article, we report the results we obtained when investigating the numerical solution of some nonlinear eigenvalue problems for the Monge-Ampère operator v → det D2v. The methodology we employ relies on the following ingredients: (i) a divergence formulation of the eigenvalue problems under consideration. (ii) The time discretization by operator-splitting of an initial value problem (a kind of gradient flow) associated with each eigenvalue problem. (iii) A finite element approximation relying on spaces of continuous piecewise affine functions. To validate the above methodology, we applied it to the solution of problems with known exact solutions: The results we obtained suggest convergence to the exact solution when the space discretization step h → 0. We considered also test problems with no known exact solutions.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2020072
Classification : 35J60, 65N25, 65N30
Mots-clés : Monge-Ampère equation, nonlinear eigenvalue problems, operator-splitting methods, finite element approximations
@article{COCV_2020__26_1_A118_0,
     author = {Glowinski, Roland and Leung, Shingyu and Liu, Hao and Qian, Jianliang},
     editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinsk, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
     title = {On the numerical solution of nonlinear eigenvalue problems for the {Monge-Amp\`ere} operator},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020072},
     mrnumber = {4188832},
     zbl = {1460.35183},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020072/}
}
TY  - JOUR
AU  - Glowinski, Roland
AU  - Leung, Shingyu
AU  - Liu, Hao
AU  - Qian, Jianliang
ED  - Buttazzo, G.
ED  - Casas, E.
ED  - de Teresa, L.
ED  - Glowinsk, R.
ED  - Leugering, G.
ED  - Trélat, E.
ED  - Zhang, X.
TI  - On the numerical solution of nonlinear eigenvalue problems for the Monge-Ampère operator
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020072/
DO  - 10.1051/cocv/2020072
LA  - en
ID  - COCV_2020__26_1_A118_0
ER  - 
%0 Journal Article
%A Glowinski, Roland
%A Leung, Shingyu
%A Liu, Hao
%A Qian, Jianliang
%E Buttazzo, G.
%E Casas, E.
%E de Teresa, L.
%E Glowinsk, R.
%E Leugering, G.
%E Trélat, E.
%E Zhang, X.
%T On the numerical solution of nonlinear eigenvalue problems for the Monge-Ampère operator
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020072/
%R 10.1051/cocv/2020072
%G en
%F COCV_2020__26_1_A118_0
Glowinski, Roland; Leung, Shingyu; Liu, Hao; Qian, Jianliang. On the numerical solution of nonlinear eigenvalue problems for the Monge-Ampère operator. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 118. doi : 10.1051/cocv/2020072. http://www.numdam.org/articles/10.1051/cocv/2020072/

[1] J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory. Springer Science & Business Media (2013). | MR | Zbl

[2] P.G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications. SIAM, Philadelphia, PA (2013). | DOI | MR | Zbl

[3] J. Dutta, Generalized derivatives and nonsmooth optimization, a finite dimensional tour. Sociedad de Estatistica e Investigacion Operativa Top 13 (2005) 185–279. | MR | Zbl

[4] R. Glowinski, H. Liu, S. Leung and J. Qian, A finite element/operator-splitting method for the numerical solution of the two dimensional elliptic Monge-Ampère equation. J. Sci. Comput. 79 (2019) 1–47. | DOI | MR | Zbl

[5] R. Glowinski, S.J. Osher and W. Yin, Splitting Methods in Communication, Imaging, Science, and Engineering. Springer, Switzerland (2017). | MR | Zbl

[6] N.Q. Le, The eigenvalue problem for the Monge-Ampère operator on general bounded convex domains. Ann. Sc. Norm. Sup. Pisa, Cl Sci. 18 (2018) 1519–1559. | MR | Zbl

[7] P.-L. Lions, Two remarks on Monge-Ampère equations. Ann. Mat. Pura Appl. 142 (1985) 263–275. | DOI | MR | Zbl

[8] H. Liu, R. Glowinski, S. Leung and J. Qian, A finite element/operator-splitting method for the numerical solution of the three dimensional Monge-Ampère equation. J. Sci. Comput. 81 (2019) 2271–2302. | DOI | MR | Zbl

Cité par Sources :

Dedicated to Enrique Zuazua on the occasion of his 60th birthday.