Null controllability of the heat equation in pseudo-cylinders by an internal control
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 122.

In this paper we prove the null controllability of the heat equation in domains with a cylindrical part and limited by a Lipschitz graph. The proof consists mainly on getting a Carleman estimate which presents the usual absorption properties. The main difficulty we face is the loss of existence of the usual weighted function in C2 smooth domains. In order to deal with this, we use its cylindrical structure and approximate the system by the same system stated in regular domains. Finally, we show some applications like the controllability of the semi-linear heat equation in those domains.

DOI : 10.1051/cocv/2020048
Classification : 35D30, 93B05, 93C20
Mots-clés : Carleman inequalities, heat equation, Lipschitz domains, null controllability
@article{COCV_2020__26_1_A122_0,
     author = {B\'arcena-Petisco, Jon Asier},
     title = {Null controllability of the heat equation in pseudo-cylinders by an internal control},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020048},
     mrnumber = {4188822},
     zbl = {1459.35227},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020048/}
}
TY  - JOUR
AU  - Bárcena-Petisco, Jon Asier
TI  - Null controllability of the heat equation in pseudo-cylinders by an internal control
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020048/
DO  - 10.1051/cocv/2020048
LA  - en
ID  - COCV_2020__26_1_A122_0
ER  - 
%0 Journal Article
%A Bárcena-Petisco, Jon Asier
%T Null controllability of the heat equation in pseudo-cylinders by an internal control
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020048/
%R 10.1051/cocv/2020048
%G en
%F COCV_2020__26_1_A122_0
Bárcena-Petisco, Jon Asier. Null controllability of the heat equation in pseudo-cylinders by an internal control. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 122. doi : 10.1051/cocv/2020048. http://www.numdam.org/articles/10.1051/cocv/2020048/

[1] R.A. Adams and J.J.F. Fournier, Sobolev spaces, Vol. 140. Elsevier, Amsterdam (2003). | MR | Zbl

[2] J. Apraiz and L. Escauriaza, Null-control and measurable sets. ESAIM: COCV 19 (2013) 239–254. | Numdam | MR | Zbl

[3] J. Apraiz, L. Escauriaza, G. Wang and C. Zhang, Observability inequalities and measurable sets. J. Eur. Math. Soc. 16 (2014) 11. | DOI | MR | Zbl

[4] A. Benabdallah, Y. Dermenjian and J. Le Rousseau Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem. J. Math. Anal. Appl. 336 (2007) 865–887. | DOI | MR | Zbl

[5] F. Boyer and P. Fabrie, Mathematical tool for the study of the incompressible Navier-Stokes equations and related models, 1st edn. Springer, Berlin (2013). | MR | Zbl

[6] F.W. Chaves-Silva and G. Lebeau, Spectral inequality and optimal cost of controllability for the Stokes system. ESAIM: COCV 22 (2016) 1137–1162. | Numdam | MR | Zbl

[7] B. Csikós, Differential geometry. Typotex Publishing House, Hungary (2014).

[8] A. Doubova, E. Fernández-Cara, M. González-Burgos and E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient. SIAM J. Control. Optim. 41 (2002) 798–819. | DOI | MR | Zbl

[9] A. Doubova, A. Osses and J.-P. Puel, Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients. ESAIM: COCV 8 (2002) 621–661. | Numdam | MR | Zbl

[10] S. Ervedoza and E. Zuazua, Sharp observability estimates for heat equations. Arch. Ration. Mech. Anal. 202 (2011) 975–1017. | DOI | MR | Zbl

[11] L. Escauriaza, S. Montaner and C. Zhang, Observation from measurable sets for parabolic analytic evolutions and applications. J. Math. Pure. Appl. 104 (2015) 837–867. | DOI | MR | Zbl

[12] L. Escauriaza, S. Montaner and C. Zhang, Analyticity of solutions to parabolic evolutions and applications. SIAM J. Control. Optim. 49 (2017) 4064–4092. | MR | Zbl

[13] E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. Henri Poincare-A.N. 17 (2000) 583–616. | DOI | Numdam | MR | Zbl

[14] E. Fernández-Cara and S. Guerrero, Global Carleman estimates for solutions of parabolic systems defined by transposition and some applications to controllability. Appl. Math. Res. Express 2006 (2006) 1–31. | MR | Zbl

[15] E. Fernández-Cara and S. Guerrero, Global carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control. Optim. 45 (2006) 1395–1446. | DOI | MR | Zbl

[16] E. Fernández-Cara, M. González-Burgos, S. Guerrero and J.-P. Puel, Null controllability of the heat equation with boundary Fourier conditions: the linear case. ESAIM: COCV 12 (2006) 442–465. | Numdam | MR | Zbl

[17] A.V. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations. Number 34. Seoul National University (1996). | MR | Zbl

[18] M. González-Burgos and L. De Teresa Some results on controllability for linear and nonlinear heat equations in unbounded domains. Adv. Differ. Equ. 12 (2007) 1201–1240. | MR | Zbl

[19] P. Grisvard, Elliptic problems in nonsmooth domains. SIAM (2011). | MR | Zbl

[20] S. Guerrero and F. Guillen-Gonzalez, On the controllability of the hydrostatic stokes equations. J. Math. Fluid Mech. 10 (2008) 402–422. | DOI | MR | Zbl

[21] O. Yu. Imanuvilov and M. Yamamoto, Carleman estimate for a parabolic equation in a Sobolev space of negative order and its applications, Control of Nonlinear Distributed Parameter Systems. CRC Press, Boca Raton (2001) 137–162. | MR | Zbl

[22] O. Yu. Imanuvilov, J.-P. Puel and M. Yamamoto, Carleman estimates for parabolic equations with nonhomogeneous boundary conditions. Chin. Ann. Math. 30 (2009) 333–378. | DOI | MR | Zbl

[23] D.S. Jerison and C.E. Kenig, The Neumann problem on Lipschitz domains. B. Am. Math. Soc. 4 (1981) 203–207. | DOI | MR | Zbl

[24] J. Le Rousseau and L. Robbiano, Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces. Invent. Math. 183 (2011) 245–336. | DOI | MR | Zbl

[25] G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur. Commun. Part. Differ. Equ. 20 (1995) 335–356. | DOI | MR | Zbl

[26] G. Lieberman, Regularized distance and its applications. Pac. J. Math. 117 (1985) 329–352. | DOI | MR | Zbl

[27] J.L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systemes distribués, tome 1, RMA 8 (1988). | MR | Zbl

[28] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications (1968). | MR | Zbl

[29] L. Miller, Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time. J. Differ. Equ. 204 (2004) 202–226. | DOI | MR | Zbl

[30] L. Miller, The control transmutation method and the cost of fast controls. SIAM J. Control. Optim. 45 (2006) 762–772. | DOI | MR | Zbl

[31] J. Pedlosky, Geophysical fluid dynamics. Springer-Verlag, Berlin (1982). | DOI | Zbl

[32] D.L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Stud. Appl. Math. 52 (1973) 189–211. | DOI | MR | Zbl

[33] D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639–739. | DOI | MR | Zbl

[34] J. Simon, Compact sets in the space $L^p (O, T; B)$. Ann. Mat. Pur. Appl. 146 (1986) 65–96. | DOI | MR | Zbl

[35] G. Tenenbaum and M. Tucsnak, New blow-up rates for fast controls of Schrödinger and heat equations. J. Differ. Equ. 243 (2007) 70–100. | DOI | MR | Zbl

[36] G. Wang, L -null controllability for the heat equation and its consequences for the time optimal control problem. SIAM J. Control. Optim. 47 (2008) 1701–1720. | DOI | MR | Zbl

[37] C. Zhang, An observability estimate for the heat equation from a product of two measurable sets. J. Math. Anal. Appl. 396 (2012) 7–12. | DOI | MR | Zbl

Cité par Sources :