Local feedback stabilization of time-periodic evolution equations by finite dimensional controls
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 101.

We study the feedback stabilization around periodic solutions of parabolic control systems with unbounded control operators, by controls of finite dimension. We prove that the stabilization of the infinite dimensional system relies on the stabilization of a finite dimensional control system obtained by projection and next transformed via its Floquet-Lyapunov representation. We emphasize that this approach allows us to define feedback control laws by solving Riccati equations of finite dimension. This approach, which has been developed in the recent years for the boundary stabilization of autonomous parabolic systems, seems to be totally new for the stabilization of periodic systems of infinite dimension. We apply results obtained for the linearized system to prove a local stabilization result, around periodic solutions, of the Navier-Stokes equations, by finite dimensional Dirichlet boundary controls.

DOI : 10.1051/cocv/2020041
Classification : 93B52, 93D15, 35B10, 34H15, 76D55
Mots-clés : Periodic parabolic systems, feedback stabilization, finite dimensional controls, Navier-Stokes equations
@article{COCV_2020__26_1_A101_0,
     author = {Badra, Mehdi and Mitra, Debanjana and Ramaswamy, Mythily and Raymond, Jean-Pierre},
     title = {Local feedback stabilization of time-periodic evolution equations by finite dimensional controls},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020041},
     mrnumber = {4185060},
     zbl = {1460.93079},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020041/}
}
TY  - JOUR
AU  - Badra, Mehdi
AU  - Mitra, Debanjana
AU  - Ramaswamy, Mythily
AU  - Raymond, Jean-Pierre
TI  - Local feedback stabilization of time-periodic evolution equations by finite dimensional controls
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020041/
DO  - 10.1051/cocv/2020041
LA  - en
ID  - COCV_2020__26_1_A101_0
ER  - 
%0 Journal Article
%A Badra, Mehdi
%A Mitra, Debanjana
%A Ramaswamy, Mythily
%A Raymond, Jean-Pierre
%T Local feedback stabilization of time-periodic evolution equations by finite dimensional controls
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020041/
%R 10.1051/cocv/2020041
%G en
%F COCV_2020__26_1_A101_0
Badra, Mehdi; Mitra, Debanjana; Ramaswamy, Mythily; Raymond, Jean-Pierre. Local feedback stabilization of time-periodic evolution equations by finite dimensional controls. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 101. doi : 10.1051/cocv/2020041. http://www.numdam.org/articles/10.1051/cocv/2020041/

[1] H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Equations in Control and Systems Theory, Systems & Control: Foundations & Applications. Birkhauser Basel (2003). | MR | Zbl

[2] P. Acquistapace, F. Flandoli and B. Terreni, Initial-boundary value problems and optimal control for nonautonomous parabolic systems. SIAM J. Control Optim. 29 (1991) 89–118. | DOI | MR | Zbl

[3] P. Acquistapace and B. Terreni, Infinite-horizon linear-quadratic regulator problems for nonautonomous parabolic systems with boundary control. SIAM J. Control Optim. 34 (1996) 1–30. | DOI | MR | Zbl

[4] C. Airiau, J.-M. Buchot, R.K. Dubey, M. Fournié, J.-P. Raymond and J. Weller-Calvo, Stabilization and best actuator location for the Navier-Stokes equations SIAM J. Sci. Comput. 39 (2017) B993–B1020. | DOI | MR | Zbl

[5] J. Alastruey, S.M. Moore, K.H. Parker, T. David, J. Peiró and S.J. Sherwin, Reduced modelling of blood flow in the cerebral circulation: coupling 1-D, 0-D and cerebral auto-regulation models. Internat. J. Numer. Methods Fluids 56 (2008) 1061–1067. | DOI | MR | Zbl

[6] H. Amann, Linear and quasilinear parabolic problems, Vol. I, volume 89 of Monographs in Mathematics. Birkhäuser Boston, Inc., Boston, MA (1995). | MR | Zbl

[7] M. Badra, D. Mitra, M. Ramaswamy and J.-P. Raymond, Stabilizabilty of time-periodic parabolic systems by finite dimensional controls. SIAM J. Control Optim. 58 (2020) 1735–1768. | DOI | MR | Zbl

[8] M. Badra, Local stabilization of the Navier-Stokes equations with a feedback controller localized in an open subset of the domain. Numer. Funct. Anal. Optim. 28 (2007) 559–589. | DOI | MR | Zbl

[9] M. Badra and T. Takahashi. On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems. ESAIM: COCV 20 (2014) 924–956. | Numdam | MR | Zbl

[10] M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: application to the Navier-Stokes system. SIAM J. Control Optim. 49 (2011) 420–463. | DOI | MR | Zbl

[11] V. Barbu and G. Wang, Feedback stabilization of periodic solutions to nonlinear parabolic-like evolution systems. Indiana Univ. Math. J. 54 (2005) 1521–1546. | DOI | MR | Zbl

[12] A. Bensoussan, G. Da Prato, M. Delfour and S.K. Mitter, Representation and Control of Infinite Dimensional Systems, Second edition, Systems and Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA (2007). | MR | Zbl

[13] S. Bittanti, P. Colaneri and G. Guardabassi, Analysis of the periodic Lyapunov and Riccati equations via canonical decomposition. SIAM J. Control Optim. 24 (1998) 1138–1149. | DOI | MR | Zbl

[14] S. Bittanti and P. Colaneri, Periodic Systems, Filtering and Control. Springer, Berlin (2009). | Zbl

[15] J.-J. Casanova, Existence of time-periodic strong solutions to a fluid-structure system. Discrete Contin. Dyn. Syst. 39 (2019) 3291–3313. | DOI | MR | Zbl

[16] P. Constantin and C. Foias, Navier-Stokes equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL (1988). | DOI | MR | Zbl

[17] G. Da Prato and A. Ichikawa. Quadratic control for linear time-varying systems. SIAM J. Control Optim. 28 (1990) 359–381. | DOI | MR | Zbl

[18] G. Da Prato Synthesis of optimal control for an infinite-dimensional periodic problem. SIAM J. Control Optim. 25 (1987) 706–714. | DOI | MR | Zbl

[19] R. Datko, Uniform asymptotic stability of evolutionary processes in a Banach space. SIAM J. Math. Anal. 3 (1972) 428–445. | DOI | MR | Zbl

[20] R. Denk, M. Hieber and J. Prüss. R -boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc. 166 (2003). | MR | Zbl

[21] C. Fabre, Uniqueness results for Stokes equations and their consequences in linear and nonlinear control problems. ESAIM: COCV 1 (1995/96) 267–302. | Numdam | MR | Zbl

[22] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol. 840. Springer-Verlag, Berlin (1981). | DOI | MR | Zbl

[23] H. Kato, Existence of periodic solutions of the Navier-Stokes equations. J. Math. Anal. Appl. 208 (1997) 141–157. | DOI | MR | Zbl

[24] T. Kato, Perturbation Theory for Linear Operators, Grundlehren Math. Wiss., Vol. 132. Springer-Verlag, New York (1966). | MR | Zbl

[25] T. Kobayashi, Time periodic solutions of the Navier-Stokes equations under general outflow condition. Tokyo J. Math. 32 (2009) 409–424. | DOI | MR | Zbl

[26] P. Koch Medina Feedback stabilizability of time-periodic parabolic equations. Dynamics reported, 26–98, Dynam. Report. Expositions in Dynamical Systems (N.S.), 5. Springer, Berlin (1996). | DOI | MR | Zbl

[27] P. Kučera, The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete Contin. Dyn. Syst. Ser. S 3 (2010) 325–337. | MR | Zbl

[28] I. Lasiecka and R. Triggiani, Control theory for partial differential equations: continuous and approximation theories. I, Vol. 74 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2000). | MR | Zbl

[29] A. Lunardi, Stabilizability of time-periodic parabolic equations. SIAM J. Control Optim. 29 (1991) 810–828. | DOI | MR | Zbl

[30] A. Lunardi, Bounded solutions of linear periodic abstract parabolic equations. Proc. Roy. Soc. Edinburgh Sect. A 110 (1988) 135–159. | DOI | MR | Zbl

[31] A. Lunardi, On the evolution operator for abstract parabolic equations. Israel J. Math. 60 (1987) 281–314. | DOI | MR | Zbl

[32] P.A. Nguyen, J.-P. Raymond, Boundary stabilization of the Navier-Stokes equations in the case of mixed boundary conditions. SIAM J. Control Optim. 53 (2015) 3006–3039. | DOI | MR | Zbl

[33] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences. Springer-Verlag, New York (1983). | MR | Zbl

[34] J.-P. Raymond, Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions. Ann. Inst. Henri Poincaré Anal. Non Linéaire 24 (2007) 921–951. | DOI | MR | Zbl

[35] J.-P. Raymond, Feedback boundary stabilization of the two-dimensional Navier-Stokes equations. SIAM J. Control Optim. 45 (2006) 790–828. | DOI | MR | Zbl

[36] J.-P. Raymond and L. Thevenet, Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers. Discrete Contin. Dyn. Syst. 27 (2010) 1159–1187. | DOI | MR | Zbl

[37] Sérgio S. Rodrigues, Feedback Boundary Stabilization to Trajectories for 3D Navier–Stokes Equations. To published in: Appl. Math. Optim. (2018). | DOI | MR | Zbl

[38] R. Temam, Navier-Stokes equations. Theory and numerical analysis, Reprint ofthe 1984 edition. AMS Chelsea Publishing, Providence, RI (2001). | MR | Zbl

[39] H. Triebel. Interpolation theory, function spaces, differential operators, volume 18 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam-New York (1978). | MR | Zbl

[40] G. Wang and Y. Xu, Equivalent conditions on periodic feedback stabilization for linear periodic evolution equations. J. Function. Anal. 266 (2014) 5126–5173. | DOI | MR | Zbl

[41] A. Yagi, Coïncidence entre des espaces d’interpolation et des domaines de puissances fractionnaires d’opérateurs. C. R. Acad. Sci. Paris Sér. I Math. 299 (1984) 173–176. | MR | Zbl

Cité par Sources :