This paper studies the stability of a 1-dim system which comprises a wave equation and a degenerate heat equation in two connected bounded intervals. The coupling between these two different components occurs at the interface with certain transmission conditions. We find an explicit polynomial decay rate for solutions of this system. This rate depends on the degree of the degeneration for the diffusion coefficient near the interface. Besides, the well-posedness of this degenerate coupled system is proved by the semigroup theory.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2020040
Mots-clés : Polynomial decay, $C_0$ semigroup, coupled heat-wave equation, degenerate coefficient
@article{COCV_2020__26_1_A116_0, author = {Han, Zhong-Jie and Wang, Gengsheng and Wang, Jing}, editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinsk, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.}, title = {Explicit decay rate for a degenerate hyperbolic-parabolic coupled system}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {26}, year = {2020}, doi = {10.1051/cocv/2020040}, mrnumber = {4188828}, zbl = {1459.35041}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2020040/} }
TY - JOUR AU - Han, Zhong-Jie AU - Wang, Gengsheng AU - Wang, Jing ED - Buttazzo, G. ED - Casas, E. ED - de Teresa, L. ED - Glowinsk, R. ED - Leugering, G. ED - Trélat, E. ED - Zhang, X. TI - Explicit decay rate for a degenerate hyperbolic-parabolic coupled system JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2020 VL - 26 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2020040/ DO - 10.1051/cocv/2020040 LA - en ID - COCV_2020__26_1_A116_0 ER -
%0 Journal Article %A Han, Zhong-Jie %A Wang, Gengsheng %A Wang, Jing %E Buttazzo, G. %E Casas, E. %E de Teresa, L. %E Glowinsk, R. %E Leugering, G. %E Trélat, E. %E Zhang, X. %T Explicit decay rate for a degenerate hyperbolic-parabolic coupled system %J ESAIM: Control, Optimisation and Calculus of Variations %D 2020 %V 26 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2020040/ %R 10.1051/cocv/2020040 %G en %F COCV_2020__26_1_A116_0
Han, Zhong-Jie; Wang, Gengsheng; Wang, Jing. Explicit decay rate for a degenerate hyperbolic-parabolic coupled system. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 116. doi : 10.1051/cocv/2020040. http://www.numdam.org/articles/10.1051/cocv/2020040/
[1] Carleman estimates for degenerate parabolic operators with applications to null controllability. J. Evol. Equ. 6 (2006) 161–204. | DOI | MR | Zbl
, and ,[2] Heat-wave interaction in 2-3 dimensions: Optimal rational decay rate. J. Math. Anal. Appl. 437 (2016) 782–815. | DOI | MR | Zbl
, and ,[3] Rational decay rates for a PDE heat–structure interaction: A frequency domain approach. Evol. Equ. Control Theory 2 (2013) 233–253. | DOI | MR | Zbl
and ,[4] Smoothness of weak solutions to a nonlinear fluid-structure interaction model. Indiana Univ. Math. J. 57 (2008) 1173–1207. | DOI | MR | Zbl
, , and ,[5] Weighted inequalities of Hardy type. Siberian Math. J. 30 (1989) 8–16. | DOI | MR | Zbl
and ,[6] Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347 (2010) 455–478. | DOI | MR | Zbl
and ,[7] Null controllability of degenerate heat equations. Adv. Differ. Equ. 10 (2005) 153–190. | MR | Zbl
, and ,[8] Controllability of 1-d coupled degenerate parabolic equations. Electron. J. Differ. Eq. 73 (2009) 1–21. | MR | Zbl
and ,[9] A degenerate parabolic equation arising in image processing. Commun. Appl. Anal. 8 (2004) 125–141. | MR | Zbl
and ,[10] Analysis of a linear fluid-structure interaction problem. Discrete Contin. Dyn. Syst. 9 (2003) 633–650. | DOI | MR | Zbl
, , and ,[11] Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface. Asymptot. Anal. 51 (2007) 17–45. | MR | Zbl
,[12] A class of degenerate diffusion processes occurring in population genetics. Comm. Pure Appl. Math. 29 (1976) 483–493. | DOI | MR | Zbl
,[13] Stability of degenerate heat equation in non-cylindrical/ cylindrical domain. Z. Angew. Math. Phys. 70 (2019) 120. | DOI | MR | Zbl
, and ,[14] Strong solutions to a nonlinear fluid structure interaction system. J. Differ. Equ. 247 (2009) 1452–1478. | DOI | MR | Zbl
, and ,[15] Strong solutions for a fluid-structure interaction system. Adv. Differ. Equ. 15 (2010) 231–254. | MR | Zbl
, and ,[16] Eventual differentiability of a string with local Kelvin-Voigt damping. ESAIM: COCV 23 (2017) 443–454. | Numdam | MR | Zbl
, and ,[17] Characterization of polynomial decay rate for the solution of linear evolution equation. Z. Angew. Math. Phys. 56 (2005) 630–644. | DOI | MR | Zbl
and ,[18] Stability of a string with local Kelvin-Voigt damping and nonsmooth coefficient at interface. SIAM J. Control and Optim. 54 (2016) 1859–1871. | DOI | MR | Zbl
and ,[19] Stability and regularity of solution to the Timoshenko beam equation with local Kelvin-Voigt damping. SIAM J. Control and Optim. 56 (2018) 3919–3947. | DOI | MR | Zbl
and ,[20] Semigroups Associated with Dissipative Systems. Chapman & Hall/ CRC, Boca Raton (1999). | MR | Zbl
and ,[21] Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). | DOI | MR | Zbl
,[22] Polynomial decay for a hyperbolic-parabolic coupled system. J. Math. Pures Appl. 84 (2005) 407–470. | MR | Zbl
, and ,[23] Stabilization and Gevrey regularity of a Schrödinger equation in boundary feedback with a heat equation. IEEE Trans. Automat. Contr. 57 (2012) 179–185. | DOI | MR | Zbl
, and ,[24] Polynomial decay and control of a 1-d hyperbolic-parabolic coupled system. J. Differ. Equ. 204 (2004) 380–438. | DOI | MR | Zbl
and ,[25] Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction. Arch. Ration. Mech. An. 184 (2007) 49–120. | DOI | MR | Zbl
and ,[26] Control, observation and polynomial decay for a coupled heat-wave system. C. R. Acad. Sci. Paris, Ser. I 336 (2003) 823–828. | DOI | MR | Zbl
and ,[27] Null control of a 1-d model of mixed hyperbolic-parabolic type, in Optimal Control and Partial Differential Equations, edited by , et al., IOS Press, Amsterdam (2001), 198–210. | MR | Zbl
,Cité par Sources :
This research is supported by the Natural Science Foundation of China under grants 61573252, 11971022, 11926337.