A simplified derivation technique of topological derivatives for quasi-linear transmission problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 106.

In this paper we perform the rigorous derivation of the topological derivative for optimization problems constrained by a class of quasi-linear elliptic transmission problems. In the case of quasi-linear constraints, techniques using fundamental solutions of the differential operators cannot be applied to show convergence of the variation of the states. Some authors succeeded showing this convergence with the help of technical computations under additional requirements on the problem. Our main objective is to simplify and extend these previous results by using a Lagrangian framework and a projection trick. Besides these generalisations the purpose of this manuscript is to present a systematic derivation approach for topological derivatives.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2020035
Classification : 49Q10, 49Qxx, 90C46
Mots-clés : Topological derivative, quasi-linear problems, topology optimisation, asymptotic analysis, adjoint approach
@article{COCV_2020__26_1_A106_0,
     author = {Gangl, Peter and Sturm, Kevin},
     title = {A simplified derivation technique of topological derivatives for quasi-linear transmission problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020035},
     mrnumber = {4185062},
     zbl = {1459.49027},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020035/}
}
TY  - JOUR
AU  - Gangl, Peter
AU  - Sturm, Kevin
TI  - A simplified derivation technique of topological derivatives for quasi-linear transmission problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020035/
DO  - 10.1051/cocv/2020035
LA  - en
ID  - COCV_2020__26_1_A106_0
ER  - 
%0 Journal Article
%A Gangl, Peter
%A Sturm, Kevin
%T A simplified derivation technique of topological derivatives for quasi-linear transmission problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020035/
%R 10.1051/cocv/2020035
%G en
%F COCV_2020__26_1_A106_0
Gangl, Peter; Sturm, Kevin. A simplified derivation technique of topological derivatives for quasi-linear transmission problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 106. doi : 10.1051/cocv/2020035. http://www.numdam.org/articles/10.1051/cocv/2020035/

[1] H. Ammari and H. Kang,. Polarization and Moment Tensors. Springer New York, 2007. | MR | Zbl

[2] S. Amstutz, Sensitivity analysis with respect to a local perturbation of the material property. Asymptotic Anal. 49 (2006) 1. | MR | Zbl

[3] S. Amstutz, Topological sensitivity analysis for some nonlinear PDE systems. J. Math. Pures Appl. 85 (2006) 540–557. | DOI | MR | Zbl

[4] S. Amstutz and A. Bonnafé, Topological derivatives for a class of quasilinear elliptic equations. J. Math. Pures Appl. 107 (2017) 367–408. | DOI | MR

[5] S. Amstutz and P. Gangl, Topological derivative for the nonlinear magnetostatic problem. Electron. Trans. Numer. Anal. 51 (2019) 169–218. | DOI | MR | Zbl

[6] A. Bonnafé, Développements asymptotiques topologiques pour une classe d’équations elliptiques quasi-linéaires. Estimations et développements asymptotiques de p-capacités de condensateur. Le cas anisotrope du segment. Ph.D. thesis, Université de Toulouse, France (2013).

[7] M.C. Delfour, Control, Shape, and Topological Derivatives via Minimax Differentiability of Lagrangians. Springer International Publishing, Cham (2018) 137–164. | MR

[8] M.C. Delfour and K. Sturm, Parametric semidifferentiability of minimax of Lagrangians: averaged adjoint approach. J. Convex Anal. 24 (2017) 1117–1142. | MR | Zbl

[9] J. Deny and J.L. Lions, Les espaces du type de Beppo Levi. Ann. Inst. Fourier, Grenoble 5 (1955) 305–370. | DOI | Numdam | Zbl

[10] J. Elstrodt, Mass- und Integrations theorie. Springer, Berlin (1999). | MR | Zbl

[11] H.A. Eschenauer, V.V. Kobelev and A. Schumacher, Bubble method for topology and shape optimization of structures. Struct. Optim. 8 (1994) 42–51. | DOI

[12] P. Gangl, Sensitivity-Based Topology and Shape Optimization with Application to Electrical Machines. Ph.D. thesis, Johannes Kepler University Linz (2017).

[13] P. Gangl and K. Sturm, Asymptotic analysis and topological derivative for 3D quasi-linear magnetostatics 2019. | MR

[14] M. Iguernane, S.A. Nazarov, J.-R. Roche, J. Sokołowski and K. Szulc, Topological derivatives for semilinear elliptic equations. Int. J. Appl. Math. Comput. Sci. 19 (2009) 191–205. | DOI | MR | Zbl

[15] O.A. Ladyzhenskaia, Solution “in the large” of the nonstationary boundary value problem for the navier-stokes system with two space variables. Commun. Pure Appl. Math. 12 (1959) 427–433. | DOI | MR | Zbl

[16] L. Nirenberg, On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa 13 (1959) 115–162. | Numdam | MR | Zbl

[17] A.A. Novotny and J. Sokołowski, Topological Derivatives in Shape Optimization. Springer, Berlin (2013). | DOI | MR | Zbl

[18] A.A. Novotny, J. Sokolowski and A. Zochowski, Applications of the Topological Derivative Method. Vol. 188. Springer, Berlin (2019). | DOI | MR

[19] C. Ortner and E. Süli, A note on linear elliptic systems on ℝ$$. Preprint (2012). | arXiv

[20] J. Sokołowski and A. Zochowski, On the topological derivative in shape optimization. SIAM J. Control Optim. 37 (1999) 1251–1272. | DOI | MR | Zbl

[21] K. Sturm, Topological sensitivities via a Lagrangian approach for semi-linear problems. Preprint (2018). | arXiv | MR

[22] E. Zeidler, Nonlinear functional analysis and its applications. Springer, New York (1990). | MR | Zbl

Cité par Sources :