Asymptotic Hölder regularity for the ellipsoid process
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 112.

We obtain an asymptotic Hölder estimate for functions satisfying a dynamic programming principle arising from a so-called ellipsoid process. By the ellipsoid process we mean a generalization of the random walk where the next step in the process is taken inside a given space dependent ellipsoid. This stochastic process is related to elliptic equations in non-divergence form with bounded and measurable coefficients, and the regularity estimate is stable as the step size of the process converges to zero. The proof, which requires certain control on the distortion and the measure of the ellipsoids but not continuity assumption, is based on the coupling method.

DOI : 10.1051/cocv/2020034
Classification : 35B65, 35J15, 60H30, 60J10, 91A50
Mots-clés : Dynamic programming principle, local Hölder estimates, stochastic games, coupling of stochastic processes, ellipsoid process, equations in non-divergence form
@article{COCV_2020__26_1_A112_0,
     author = {Arroyo, \'Angel and Parviainen, Mikko},
     title = {Asymptotic {H\"older} regularity for the ellipsoid process},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020034},
     mrnumber = {4185066},
     zbl = {1459.35061},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020034/}
}
TY  - JOUR
AU  - Arroyo, Ángel
AU  - Parviainen, Mikko
TI  - Asymptotic Hölder regularity for the ellipsoid process
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020034/
DO  - 10.1051/cocv/2020034
LA  - en
ID  - COCV_2020__26_1_A112_0
ER  - 
%0 Journal Article
%A Arroyo, Ángel
%A Parviainen, Mikko
%T Asymptotic Hölder regularity for the ellipsoid process
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020034/
%R 10.1051/cocv/2020034
%G en
%F COCV_2020__26_1_A112_0
Arroyo, Ángel; Parviainen, Mikko. Asymptotic Hölder regularity for the ellipsoid process. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 112. doi : 10.1051/cocv/2020034. http://www.numdam.org/articles/10.1051/cocv/2020034/

[1] Á. Arroyo, J. Heino and M. Parviainen, Tug-of-war games with varying probabilities and the normalized p(x)-Laplacian. Commun. Pure Appl. Anal. 16 (2017) 915–944. | DOI | MR | Zbl

[2] Á. Arroyo, H. Luiro, M. Parviainen and E. Ruosteenoja, Asymptotic lipschitz regularity for tug-of-war games with varying probabilities. Preprint (2018). | arXiv | MR | Zbl

[3] M. Cranston, Gradient estimates on manifolds using coupling. J. Funct. Anal. 99 (1991) 110–124. | DOI | MR | Zbl

[4] J. Han, Local lipschitz regularity for functions satisfying a time-dependent dynamic programming principle. Preprint (2019). | arXiv | MR | Zbl

[5] H. Ishii and P.-L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differ. Equ. 83 (1990) 26–78. | DOI | MR | Zbl

[6] R.V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature. Comm. Pure Appl. Math. 59 (2006) 344–407. | DOI | MR | Zbl

[7] N.V. Krylov and M.V. Safonov, An estimate for the probability of a diffusion process hitting a set of positive measure. Dokl. Akad. Nauk SSSR 245 (1979) 18–20. | MR

[8] S. Kusuoka, Hölder continuity and bounds for fundamental solutions to nondivergence form parabolic equations. Anal. Partial Differ. Equ. 8 (2015) 1–32. | MR | Zbl

[9] S. Kusuoka, Hölder and Lipschitz continuity of the solutions to parabolic equations of the non-divergence type. J. Evol. Equ. 17 (2017) 1063–1088. | DOI | MR | Zbl

[10] M. Lewicka, Random tug of war games for the p -Laplacian: 1 < p < . Preprint (2019). | arXiv | MR | Zbl

[11] M. Lewicka and J.J. Manfredi, The obstacle problem for the p -laplacian via optimal stopping of tug-of-war games. Probab. Theory Related Fields 167 (2017) 349–378. | DOI | MR | Zbl

[12] T. Lindvall and L.C.G. Rogers, Coupling of multidimensional diffusions by reflection. Ann. Probab. 14 (1986) 860–872. | DOI | MR | Zbl

[13] H. Luiro and M. Parviainen, Regularity for nonlinear stochastic games. Ann. Inst. Henri Poincaré Anal. Non Linéaire 35 (2018) 1435–1456. | DOI | Numdam | MR

[14] J.J. Manfredi, M. Parviainen and J.D. Rossi, On the definition and properties of p -harmonious functions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 11 (2012) 215–241. | Numdam | MR | Zbl

[15] N. Nadirashvili, Nonuniqueness in the martingale problem and the Dirichlet problem for uniformly elliptic operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 (1997) 537–549. | Numdam | MR | Zbl

[16] M. Parviainen and E. Ruosteenoja, Local regularity for time-dependent tug-of-war games with varying probabilities. J. Differ. Equ. 261 (2016) 1357–1398. | DOI | MR | Zbl

[17] Y. Peres and S. Sheffield, Tug-of-war with noise: a game-theoretic view of the p-Laplacian. Duke Math. J. 145 (2008) 91–120. | DOI | MR

[18] Y. Peres, O. Schramm, S. Sheffield and D.B. Wilson, Tug-of-war and the infinity Laplacian. J. Amer. Math. Soc. 22 (2009) 167–210. | DOI | MR | Zbl

[19] A. Porretta and E. Priola, Global Lipschitz regularizing effects for linear and nonlinear parabolic equations. J. Math. Pures Appl. 100 (2013) 633–686. | DOI | MR | Zbl

[20] C. Pucci and G. Talenti, Elliptic (second-order) partial differential equations with measurable coefficients and approximating integral equations. Adv. Math. 19 (1976) 48–105. | DOI | MR

Cité par Sources :