We study, in dimension n ≥ 2, the eigenvalue problem and the torsional rigidity for the p-Laplacian on convex sets with holes, with external Robin boundary conditions and internal Neumann boundary conditions. We prove that the annulus maximizes the first eigenvalue and minimizes the torsional rigidity when the measure and the external perimeter are fixed.
Mots-clés : Nonlinear eigenvalue problems, torsional rigidity, mixed boundary conditions, optimal estimates
@article{COCV_2020__26_1_A111_0, author = {Paoli, Gloria and Piscitelli, Gianpaolo and Trani, Leonardo}, title = {Sharp estimates for the first $p${\protect\emph{}-Laplacian} eigenvalue and for the $p$\protect\emph{}-torsional rigidity on convex sets with holes}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {26}, year = {2020}, doi = {10.1051/cocv/2020033}, mrnumber = {4185065}, zbl = {1460.35179}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2020033/} }
TY - JOUR AU - Paoli, Gloria AU - Piscitelli, Gianpaolo AU - Trani, Leonardo TI - Sharp estimates for the first $p$-Laplacian eigenvalue and for the $p$-torsional rigidity on convex sets with holes JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2020 VL - 26 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2020033/ DO - 10.1051/cocv/2020033 LA - en ID - COCV_2020__26_1_A111_0 ER -
%0 Journal Article %A Paoli, Gloria %A Piscitelli, Gianpaolo %A Trani, Leonardo %T Sharp estimates for the first $p$-Laplacian eigenvalue and for the $p$-torsional rigidity on convex sets with holes %J ESAIM: Control, Optimisation and Calculus of Variations %D 2020 %V 26 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2020033/ %R 10.1051/cocv/2020033 %G en %F COCV_2020__26_1_A111_0
Paoli, Gloria; Piscitelli, Gianpaolo; Trani, Leonardo. Sharp estimates for the first $p$-Laplacian eigenvalue and for the $p$-torsional rigidity on convex sets with holes. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 111. doi : 10.1051/cocv/2020033. http://www.numdam.org/articles/10.1051/cocv/2020033/
[1] On reverse Faber-Krahn inequalities. J. Math. Anal. Appl. 485 (2020) 1–20. | DOI | MR | Zbl
and[2] Bounds and extremal domains for Robin eigenvalues with negative boundary parameter. Adv. Calc. Var. 10 (2017) 357–379. | DOI | MR | Zbl
, and ,[3] Isoperimetric inequalities for eigenvalues of the Laplacian. Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, Vol. 76.1 of Proceedings of the Symposium on Pure Mathematics. American Mathematical Society, Providence, RI (2007) 105–139. | MR | Zbl
and ,[4] A direct uniqueness proof for equations involving the -Laplace operator. Manuscr. Math. 109 (2002) 229–231. | DOI | MR | Zbl
and ,[5] Isoperimetric inequalities. Wulff shape and related questions for strongly nonlinear elliptic operators. Special issue dedicated to Lawrence E. Payne. Z. Angew. Math. Phys. 54 (2003) 771–783. | DOI | MR | Zbl
, and[6] On the torsion function with Robin or Dirichlet boundary conditions. J. Funct. Anal. 266 (2014) 1647–1666. | DOI | MR | Zbl
and ,[7] Optimization problems involving the first Dirichlet eigenvalue and the torsional rigidity. New trends in shape optimization. Int. Ser. Numer. Math. 166 (2015) 19–41. | DOI | MR | Zbl
, and ,[8] Membranes élastiquement liées: extension du theoreme de Rayleigh-Faber-Krahn et de l’inegalité de Cheeger (French. English summary) [Elastically supported membranes: extension of the Rayleigh-Faber-Krahn theorem and of Cheeger’s inequality]. C. R. Acad. Sci. Paris Sér. I Math. 302 (1986) 47–50. | MR | Zbl
,[9] An upper bound for nonlinear eigenvalues on convex domains by means of the isoperimetric deficit. Arch. Math. (Basel) 94 (2010) 391–400. | DOI | MR | Zbl
, and ,[10] On torsional rigidity and principal frequencies: an invitation to the Kohler-Jobin rearrengement technique. ESAIM: COCV 20 (2014) 315–338. | Numdam | MR | Zbl
,[11] An alternative approach to the Faber-Krahn inequality for Robin problems. Calc. Var. Partial Differ. Equ. 37 (2010) 75–86. | DOI | MR | Zbl
and ,[12] The Saint-Venant inequality for the Laplace operator with Robin boundary conditions. Milan J. Math. 83 (2015) 327–343. | DOI | MR | Zbl
and ,[13] A sharp estimate for the first Robin-Laplacian eigenvalue with negative boundary parameter. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 30 (2019) 665–676. | MR | Zbl
, , and ,[14] A sharp upper bound for the torsional rigidity of rods by means of web functions. Arch. Ration. Mech. Anal. 164 (2002) 189–211. | DOI | MR | Zbl
, and ,[15] Faber-Krahn inequality for Robin problems involving -Laplacian. Acta Math. Appl. Sin. Engl. Ser. 27 (2011) 13–28. | DOI | MR | Zbl
and ,[16] A Faber-Krahn inequality for Robin problems in any space dimension. Math. Ann. 335 (2006) 767–785. | DOI | MR | Zbl
,[17] Krahn’s proof of the Rayleigh conjecture revisited. Arch Math. (Basel) 96 (2011) 187–199. | DOI | MR | Zbl
[18] Faber-Krahn inequality for anisotropic eigenvalue problems with Robin boundary conditions. Potential Anal. 41 (2014) 1147–1166. | DOI | MR | Zbl
and ,[19] An optimal bound for nonlinear eigenvalues and torsional rigidity on domains with holes. Milan J. Math. 88 (2020) 373–384. | DOI | MR | Zbl
and ,[20] A sharp weighted anisotropic Poincaré inequality for convex domains. C. R. Acad. Sci. Paris 355 (2017) 748–752. | DOI | MR | Zbl
, and ,[21] On the second Dirichlet eigenvalue of some nonlinear anisotropic elliptic operators. Bull. Sci. Math. 155 (2019) 10–32. | DOI | MR | Zbl
, and ,[22] Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt. Sitzungsberichte der mathematisch-physikalischen Klasse der Bayerischen Akademie der Wissenschaften zu Muünchen (1923) 169–172. | JFM
,[23] The first Robin eigenvalue with negative boundary parameter. Adv. Math. 280 (2015) 322–339. | DOI | MR | Zbl
and ,[24] On the first Robin eigenvalue of a class of anisotropic operators. Milan J. Math. 86 (2018) 201–223. | DOI | MR | Zbl
and ,[25] Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2006). | DOI | MR | Zbl
,[26] Contribution to the method of interior parallels applied to vibrating membranes. Studies in Mathematical Analysis and Related Topics. Stanford University Press, California (1962) 132–139. | MR | Zbl
,[27] Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann. 94 (1925) 97–100. | DOI | JFM | MR
,[28] On the principal frequency of a convex membrane and related problems. Czechoslovak Math. J. 9 (1959) 66–70. | DOI | Zbl
,[29] Two estimates for the first Robin eigenvalue of the Finsler Laplacian with negative boundary parameter. J. Optim. Theory Appl. 181 (2019) 743–757. | DOI | MR | Zbl
and ,[30] Isoperimetric inequalities and their applications. SIAM Rev. 9 (1967) 453–488. | DOI | MR | Zbl
,[31] Some isoperimetric inequalities for membrane frequencies and torsional rigidity. J. Math. Anal. Appl. 2 (1961) 210–216. | DOI | MR | Zbl
and ,[32] The anisotropic -Laplacian eigenvalue problem with Neumann boundary conditions. Differ. Integral Equ. 32 (2019) 705–734. | MR | Zbl
,[33] Two more inequalities between physical and geometrical quantities. J. Indian Math. Soc. 24 (1960) 413–419. | MR | Zbl
,[34] Isoperimetric Inequalities in Mathematical Physics. Ann. Math. Studies 27 (1951). | MR | Zbl
and ,[35] Convex bodies: the Brunn-Minkowski theory, in Encyclopedia of Mathematics and its Applications, 2nd expanded edn. Vol. 151. Cambridge University Press, Cambridge (2014). | MR | Zbl
,[36] Mathematical theory of elasticity. 2nd edn. McGraw-Hill Book Company, Inc., New York (1956). | MR | Zbl
,[37] On Harnack type inequalities and their applications to quasilinear elliptic equations. Comm. Pure Appl. Math. 20 (1967) 721–747. | DOI | MR | Zbl
,Cité par Sources :