Sharp estimates for the first p -Laplacian eigenvalue and for the p -torsional rigidity on convex sets with holes
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 111.

We study, in dimension n ≥ 2, the eigenvalue problem and the torsional rigidity for the p-Laplacian on convex sets with holes, with external Robin boundary conditions and internal Neumann boundary conditions. We prove that the annulus maximizes the first eigenvalue and minimizes the torsional rigidity when the measure and the external perimeter are fixed.

DOI : 10.1051/cocv/2020033
Classification : 35J25, 35J92, 35P15, 47J30
Mots-clés : Nonlinear eigenvalue problems, torsional rigidity, mixed boundary conditions, optimal estimates
@article{COCV_2020__26_1_A111_0,
     author = {Paoli, Gloria and Piscitelli, Gianpaolo and Trani, Leonardo},
     title = {Sharp estimates for the first $p${\protect\emph{}-Laplacian} eigenvalue and for the $p$\protect\emph{}-torsional rigidity on convex sets with holes},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020033},
     mrnumber = {4185065},
     zbl = {1460.35179},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020033/}
}
TY  - JOUR
AU  - Paoli, Gloria
AU  - Piscitelli, Gianpaolo
AU  - Trani, Leonardo
TI  - Sharp estimates for the first $p$-Laplacian eigenvalue and for the $p$-torsional rigidity on convex sets with holes
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020033/
DO  - 10.1051/cocv/2020033
LA  - en
ID  - COCV_2020__26_1_A111_0
ER  - 
%0 Journal Article
%A Paoli, Gloria
%A Piscitelli, Gianpaolo
%A Trani, Leonardo
%T Sharp estimates for the first $p$-Laplacian eigenvalue and for the $p$-torsional rigidity on convex sets with holes
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020033/
%R 10.1051/cocv/2020033
%G en
%F COCV_2020__26_1_A111_0
Paoli, Gloria; Piscitelli, Gianpaolo; Trani, Leonardo. Sharp estimates for the first $p$-Laplacian eigenvalue and for the $p$-torsional rigidity on convex sets with holes. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 111. doi : 10.1051/cocv/2020033. http://www.numdam.org/articles/10.1051/cocv/2020033/

[1] T.V. Anoop and K. Ashok Kumar On reverse Faber-Krahn inequalities. J. Math. Anal. Appl. 485 (2020) 1–20. | DOI | MR | Zbl

[2] P.R. Antunes, P. Freitas and D. Krejčiřík, Bounds and extremal domains for Robin eigenvalues with negative boundary parameter. Adv. Calc. Var. 10 (2017) 357–379. | DOI | MR | Zbl

[3] M.S. Ashbaugh and R.D. Benguria, Isoperimetric inequalities for eigenvalues of the Laplacian. Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, Vol. 76.1 of Proceedings of the Symposium on Pure Mathematics. American Mathematical Society, Providence, RI (2007) 105–139. | MR | Zbl

[4] M. Belloni and B. Kawohl, A direct uniqueness proof for equations involving the p -Laplace operator. Manuscr. Math. 109 (2002) 229–231. | DOI | MR | Zbl

[5] M. Belloni, V. Ferone and B. Kawohl. Isoperimetric inequalities. Wulff shape and related questions for strongly nonlinear elliptic operators. Special issue dedicated to Lawrence E. Payne. Z. Angew. Math. Phys. 54 (2003) 771–783. | DOI | MR | Zbl

[6] M. Van Den Berg and D. Bucur, On the torsion function with Robin or Dirichlet boundary conditions. J. Funct. Anal. 266 (2014) 1647–1666. | DOI | MR | Zbl

[7] M. Van Den Berg, G. Buttazzo and B. Velichkov, Optimization problems involving the first Dirichlet eigenvalue and the torsional rigidity. New trends in shape optimization. Int. Ser. Numer. Math. 166 (2015) 19–41. | DOI | MR | Zbl

[8] M.H. Bossel, Membranes élastiquement liées: extension du theoreme de Rayleigh-Faber-Krahn et de l’inegalité de Cheeger (French. English summary) [Elastically supported membranes: extension of the Rayleigh-Faber-Krahn theorem and of Cheeger’s inequality]. C. R. Acad. Sci. Paris Sér. I Math. 302 (1986) 47–50. | MR | Zbl

[9] B. Brandolini, C. Nitsch and C. Trombetti, An upper bound for nonlinear eigenvalues on convex domains by means of the isoperimetric deficit. Arch. Math. (Basel) 94 (2010) 391–400. | DOI | MR | Zbl

[10] L. Brasco, On torsional rigidity and principal frequencies: an invitation to the Kohler-Jobin rearrengement technique. ESAIM: COCV 20 (2014) 315–338. | Numdam | MR | Zbl

[11] D. Bucur and D. Daners, An alternative approach to the Faber-Krahn inequality for Robin problems. Calc. Var. Partial Differ. Equ. 37 (2010) 75–86. | DOI | MR | Zbl

[12] D. Bucur and A. Giacomini, The Saint-Venant inequality for the Laplace operator with Robin boundary conditions. Milan J. Math. 83 (2015) 327–343. | DOI | MR | Zbl

[13] D. Bucur, V. Ferone, C. Nitsch and C. Trombetti, A sharp estimate for the first Robin-Laplacian eigenvalue with negative boundary parameter. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 30 (2019) 665–676. | MR | Zbl

[14] G. Crasta, I. Fragalá and F. Gazzola, A sharp upper bound for the torsional rigidity of rods by means of web functions. Arch. Ration. Mech. Anal. 164 (2002) 189–211. | DOI | MR | Zbl

[15] Q. Dai and Y. Fu, Faber-Krahn inequality for Robin problems involving p -Laplacian. Acta Math. Appl. Sin. Engl. Ser. 27 (2011) 13–28. | DOI | MR | Zbl

[16] D. Daners, A Faber-Krahn inequality for Robin problems in any space dimension. Math. Ann. 335 (2006) 767–785. | DOI | MR | Zbl

[17] D. Daners Krahn’s proof of the Rayleigh conjecture revisited. Arch Math. (Basel) 96 (2011) 187–199. | DOI | MR | Zbl

[18] F. Della Pietra and N. Gavitone, Faber-Krahn inequality for anisotropic eigenvalue problems with Robin boundary conditions. Potential Anal. 41 (2014) 1147–1166. | DOI | MR | Zbl

[19] F. Della Pietra and G. Piscitelli, An optimal bound for nonlinear eigenvalues and torsional rigidity on domains with holes. Milan J. Math. 88 (2020) 373–384. | DOI | MR | Zbl

[20] F. Della Pietra, N. Gavitone and G. Piscitelli, A sharp weighted anisotropic Poincaré inequality for convex domains. C. R. Acad. Sci. Paris 355 (2017) 748–752. | DOI | MR | Zbl

[21] F. Della Pietra, N. Gavitone and G. Piscitelli, On the second Dirichlet eigenvalue of some nonlinear anisotropic elliptic operators. Bull. Sci. Math. 155 (2019) 10–32. | DOI | MR | Zbl

[22] G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt. Sitzungsberichte der mathematisch-physikalischen Klasse der Bayerischen Akademie der Wissenschaften zu Muünchen (1923) 169–172. | JFM

[23] P. Freitas and D. Krejčiřík, The first Robin eigenvalue with negative boundary parameter. Adv. Math. 280 (2015) 322–339. | DOI | MR | Zbl

[24] N. Gavitone and L. Trani, On the first Robin eigenvalue of a class of anisotropic operators. Milan J. Math. 86 (2018) 201–223. | DOI | MR | Zbl

[25] A. Henrot, Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2006). | DOI | MR | Zbl

[26] J. Hersch, Contribution to the method of interior parallels applied to vibrating membranes. Studies in Mathematical Analysis and Related Topics. Stanford University Press, California (1962) 132–139. | MR | Zbl

[27] E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises. Math. Ann. 94 (1925) 97–100. | DOI | JFM | MR

[28] E. Makai, On the principal frequency of a convex membrane and related problems. Czechoslovak Math. J. 9 (1959) 66–70. | DOI | Zbl

[29] G. Paoli and L. Trani, Two estimates for the first Robin eigenvalue of the Finsler Laplacian with negative boundary parameter. J. Optim. Theory Appl. 181 (2019) 743–757. | DOI | MR | Zbl

[30] L.E. Payne, Isoperimetric inequalities and their applications. SIAM Rev. 9 (1967) 453–488. | DOI | MR | Zbl

[31] L.E. Payne and H.F. Weinberger, Some isoperimetric inequalities for membrane frequencies and torsional rigidity. J. Math. Anal. Appl. 2 (1961) 210–216. | DOI | MR | Zbl

[32] G. Piscitelli, The anisotropic -Laplacian eigenvalue problem with Neumann boundary conditions. Differ. Integral Equ. 32 (2019) 705–734. | MR | Zbl

[33] G. Pólya, Two more inequalities between physical and geometrical quantities. J. Indian Math. Soc. 24 (1960) 413–419. | MR | Zbl

[34] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics. Ann. Math. Studies 27 (1951). | MR | Zbl

[35] R. Schneider, Convex bodies: the Brunn-Minkowski theory, in Encyclopedia of Mathematics and its Applications, 2nd expanded edn. Vol. 151. Cambridge University Press, Cambridge (2014). | MR | Zbl

[36] I.S. Sokolnikoff, Mathematical theory of elasticity. 2nd edn. McGraw-Hill Book Company, Inc., New York (1956). | MR | Zbl

[37] N. Trudinger, On Harnack type inequalities and their applications to quasilinear elliptic equations. Comm. Pure Appl. Math. 20 (1967) 721–747. | DOI | MR | Zbl

Cité par Sources :