Quasistatic evolution for dislocation-free finite plasticity
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 123.

We investigate quasistatic evolution in finite plasticity under the assumption that the plastic strain is compatible. This assumption is well-suited to describe the special case of dislocation-free plasticity and entails that the plastic strain is the gradient of a plastic deformation map. The total deformation can be then seen as the composition of a plastic and an elastic deformation. This opens the way to an existence theory for the quasistatic evolution problem featuring both Lagrangian and Eulerian variables. A remarkable trait of the result is that it does not require second-order gradients.

DOI : 10.1051/cocv/2020031
Classification : 35Q74, 49J40, 74C15
Mots-clés : Elasticity, plasticity, quasistatic evolution
@article{COCV_2020__26_1_A123_0,
     author = {Kru\v{z}{\'\i}k, Martin and Melching, David and Stefanelli, Ulisse},
     title = {Quasistatic evolution for dislocation-free finite plasticity},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020031},
     mrnumber = {4188823},
     zbl = {1465.35373},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020031/}
}
TY  - JOUR
AU  - Kružík, Martin
AU  - Melching, David
AU  - Stefanelli, Ulisse
TI  - Quasistatic evolution for dislocation-free finite plasticity
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020031/
DO  - 10.1051/cocv/2020031
LA  - en
ID  - COCV_2020__26_1_A123_0
ER  - 
%0 Journal Article
%A Kružík, Martin
%A Melching, David
%A Stefanelli, Ulisse
%T Quasistatic evolution for dislocation-free finite plasticity
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020031/
%R 10.1051/cocv/2020031
%G en
%F COCV_2020__26_1_A123_0
Kružík, Martin; Melching, David; Stefanelli, Ulisse. Quasistatic evolution for dislocation-free finite plasticity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 123. doi : 10.1051/cocv/2020031. http://www.numdam.org/articles/10.1051/cocv/2020031/

[1] B. Bakó and I. Groma, Stochastic approach for modeling dislocation patterning. Phys. Rev. B. 60 (1999) 122–127. | DOI

[2] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63 (1976) 337–403. | DOI | MR | Zbl

[3] J.M. Ball, Global invertibility of Sobolev functions and the interpenetration of matter. Proc. Roy. Soc. Edinburgh Sect. A 88 (1988) 315–328. | DOI | MR | Zbl

[4] J.M. Ball, Progress and puzzles in nonlinear elasticity, in Proceedings of the CISM Course on Poly-, Quasi- and Rank-One Convexity in Applied Mechanics, Udine, 24.9.2007–28.9.2007, edited by J. Schröder and P. Neff. Springer, Wien (2010) 1–15.

[5] M. Barchiesi and A. Desimone, Frank energy for nematic elastomers: a nonlinear model. ESAIM: COCV 21 (2015) 372–377. | Numdam | MR | Zbl

[6] M. Barchiesi, D. Henao and C. Mora-Corral, Local invertibility in Sobolev spaces with applications to nematic elastomers and magnetoelasticity. Arch. Ration. Mech. Anal. 224 (2017) 743–816. | DOI | MR | Zbl

[7] Z.P. Bažant and M. Jirásek, Nonlocal integral formulation of plasticity and damage: a survey of progress. J. Engrg. Mech. 128 (2002) 1119–1149. | DOI

[8] B. Benešová and M. Kružík, Weak lower semicontinuity of integral functionals and applications. SIAM Rev. 59 (2017) 703–766. | DOI | MR | Zbl

[9] A.P. Calderón, Lebesgue spaces of differentiable functions and distributions. Proc. Symp. Pure Math. IV (1961) 33–49. | DOI | MR | Zbl

[10] P.G. Ciarlet and J. Nečas, Injectivity and self-contact in nonlinear elasticity. Arch. Ration. Mech. Anal. 97 (1987) 171–188. | DOI | MR | Zbl

[11] S. Conti, G. Dolzmann and S. Müller, The div-curl lemma for sequences whose divergence and curl are compact in W - 1 , 1 . C.R. Math. Acad. Sci. Paris 349 (2011) 175–178. | DOI | MR | Zbl

[12] B. Dacorogna, Direct methods in the calculus of variations, 2nd edn. Applied Mathematical Sciences, 78. Springer, New York (2008) | MR | Zbl

[13] B. Dacorogna and I. Fonseca, A minimization problem involving variation of the domain. Comm. Pure Appl. Math. 45 (1992) 871–897. | DOI | MR | Zbl

[14] G. Dal Maso and G. Lazzaroni, Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Henri Poincaré, 27 (2010) 257–290. | DOI | Numdam | MR | Zbl

[15] E. Davoli and G.A. Francfort, A critical revisiting of finite elasto-plasticity. SIAM J. Math. Anal. 47 (2015) 526–565. | DOI | MR | Zbl

[16] O.W. Dillon and J. Kratochvíl, A strain gradient theory of plasticity. Int. J. Solid Struct. 6 (1970) 1513–1533. | DOI | Zbl

[17] N. Dunford and J.T. Pettis, Linear Operators on summable functions. Trans. Amer. Math. Soc. 47 (1940) 323–392. | DOI | JFM | MR

[18] N.A. Fleck and J.W. Hutchinson, A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41 (1993) 1825–1857. | DOI | MR | Zbl

[19] N.A. Fleck, G.M. Muller, M.F. Ashby and J.W. Hutchinson, Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42 (1994) 475–487. | DOI

[20] I. Fonseca and W. Gangbo, Local invertibility of Sobolev functions. SIAM J. Math. Anal. 26 (1995) 280–304. | DOI | MR | Zbl

[21] I. Fonseca and G. Parry, Equilibrium configurations of defective crystals. Arch. Ration. Mech. Anal. 120 (1992) 245–283. | DOI | MR | Zbl

[22] M. Frémond, Non-Smooth Thermomechanics. Springer, Berlin (2002) | DOI | MR | Zbl

[23] A. Giacomini and M. Ponsiglione, Non-interpenetration of matter for SBV deformations of hyperelastic brittle materials. Proc. R. Soc. Edinburgh Sect. A 138 (2008) 1019–1041. | DOI | MR | Zbl

[24] V.M. Gol’Dshtein and Yu.G. Reschetnyak, Quasiconformal mappings and Sobolev spaces, Vol. 54. Kluwer Academic Publishers, Dordrecht, Germany (1990) | DOI | MR | Zbl

[25] D. Grandi and U. Stefanelli, Finite plasticity in 𝐏 T 𝐏 . Part II: quasistatic evolution and linearization . SIAM J. Math. Anal. 49 (2017) 1356–1384. | DOI | MR | Zbl

[26] D. Grandi and U. Stefanelli, Existence and linearization for the Souza-Auricchio model at finite strains. Discr. Contin. Dyn. Syst. Ser. S 10 (2017) 1257–1280. | MR | Zbl

[27] D. Grandi, M. Kružík, E. Mainini and U. Stefanelli, A phase-field approach to Eulerian interfacial energies. Arch. Ration. Mech. Anal. 234 (2019) 351–373. | DOI | MR | Zbl

[28] J.R. Greer, W.C. Oliver and W.D. Nix, Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Math. 53 (2005) 1821–1830 | DOI

[29] M.E. Gurtin, On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids, 48 (2000) 989–1036. | DOI | MR | Zbl

[30] M.E. Gurtin and L. Anand, A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. I. Small deformations. J. Mech. Phys. Solids, 53 (2005) 1624–1649. | DOI | MR | Zbl

[31] M.E. Gurtin, E. Fried and L. Anand, The mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010) | DOI | MR

[32] S. Hencl and P. Koskela, Lectures on mappings of finite distortion, Vol. 2096 of Lecture notes in mathematics. Springer International Publishing, Berlin (2014). | DOI | MR | Zbl

[33] P.W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 88 (1992) 71–88. | MR | Zbl

[34] M. Kiritani, Dislocation-free plastic deformation under high stress. Mat. Sci. Eng. A350 (2003) 1–7. | DOI

[35] S. Klinge, K. Hackl and J. Renner, A mechanical model for dissolution-precipitation creep based on the minimum principle of the dissipation potential. Proc. R. Soc. A 471 (2015) 20140994. | DOI | MR | Zbl

[36] J. Kratochvíl and R. Sedláček, Statistical foundation of continuum dislocation plasticity. Phys. Rev. B, 77 (2008) 134102. | DOI

[37] E. Kröner, Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4 (1959) 273–334. | DOI | MR | Zbl

[38] M. Kružík, U. Stefanelli and J. Zeman, Existence results for incompressible magnetoelasticity. Discrete Contin. Dyn. Syst. 35 (2015) 2615–2623. | DOI | MR | Zbl

[39] E.H. Lee, Elastic-plastic deformation at finite strains. J. Appl. Mech. 36 (1969) 1–6. | DOI | Zbl

[40] E.H. Lee and D.T. Liu, Finite strain elastic-plastic theory with application to plane wave analysis. J. Appl. Phys. 38 (1967) 19–27. | DOI

[41] A. Mainik and A. Mielke, Global existence for rate-independent gradient plasticity at finite strain. J. Nonlinear Sci. 19 (2009) 221–248. | DOI | MR | Zbl

[42] J. Mandel, Plasticité classique et viscoplasticité, Vol. 97 of CISM Courses and Lectures. Springer-Verlag, Berlin (1972) | MR | Zbl

[43] Y. Matsukawa et al., Dynamic observation of dislocation-free plastic deformation in gold thin foils. Mater. Sci. Eng. A350 (2003) 8–16. | DOI

[44] G.A. Maugin, The Thermomechanics of Plasticity and Fracture. Cambridge University Press, Cambridge (1992) | DOI | MR | Zbl

[45] D. Melching, R. Scala and J. Zeman, Damage model for plastic materials at finite strains. ZAMM Z. Angew. Math. Mech. 99 (2019) e201800032. | DOI | MR | Zbl

[46] A. Mielke, Finite elastoplasticity, Lie groups and geodesics on SL ( d ) , in Geometry, Mechanics, and Dynamics, edited by P. Newton, A. Weinstein, and P. J. Holmes. Springer-Verlag, New York (2002) 61–90. | DOI | MR | Zbl

[47] A. Mielke, Energetic formulation of multiplicative elasto–plasticity using dissipation distances. Contin. Mech. Thermodyn. 15 (2003) 351–382. | DOI | MR | Zbl

[48] A. Mielke, Existence of minimizers in incremental elasto–plasticity with finite strains. SIAM J. Math. Anal. 36 (2004) 384–404. | DOI | MR | Zbl

[49] A. Mielke, Necessary and sufficient conditions for polyconvexity of isotropic functions. J. Convex Anal. 12 (2005) 291–314. | MR | Zbl

[50] A. Mielke and S. Müller, Lower semicontinuity and existence of minimizers in incremental finite-strain elastoplasticity. ZAMM Z. Angew. Math. Mech. 86 (2006) 233–250. | DOI | MR | Zbl

[51] A. Mielke and T. Roubíček Rate-independent Systems. Theory and application. Applied Mathematical Sciences, 193. Springer, New York (2015) | MR | Zbl

[52] A. Mielke and T. Roubíček Rate-independent elastoplasticity at finite strains and its numerical approximation. Math. Models Methods Appl. Sci. 26 (2016) 2203–2236. | DOI | MR | Zbl

[53] A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems. Calc. Var. Partial Differ. Equ. 31 (2008) 387–416. | DOI | MR | Zbl

[54] A. Mielke, R. Rossi and G. Savaré, Global existence results for viscoplasticity at finite strain. Arch. Ration. Mech. Anal. 227 (2018) 423–475. | DOI | MR | Zbl

[55] M. Ortiz and E.A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47 (1999) 397–462. | DOI | MR | Zbl

[56] C. Reina and S. Conti, Kinematic description of crystal plasticity in the finite kinematic framework: a micromechanical understanding of $\mathbf{F} = \mathbf{F}^{e} \mathbf{F}^{p}$ . J. Mech. Phys. Solids 67 (2014) 40–61. | DOI | MR | Zbl

[57] M. Röger and B. Schweizer, Strain gradient visco-plasticity with dislocation densities contributing to the energy. Math. Models Methods Appl. Sci. 27 (2017) 2595–2629. | DOI | MR | Zbl

[58] T. Roubíček, Nonlinear Partial Differential Equations with Applications, 2nd edn. Birkhäuser, Basel (2013). | DOI | MR | Zbl

[59] T. Roubíček and G. Tomassetti, A thermodynamically consistent model of magneto-elastic materials under diffusion at large strains and its analysis. Z. Angew. Math. Phys. 69 (2018) 55. | DOI | MR | Zbl

[60] P. Rybka and M. Luskin, Existence of energy minimizers for magnetostrictive materials. SIAM J. Math. Anal. 36 (2005) 2004–2019. | DOI | MR | Zbl

[61] J.C. Simo and T.J.R. Hughes, Computational Inelasticity, Interdisciplinary Applied Mathematics, 7. Springer-Verlag, New York (1998) | MR | Zbl

[62] M. Šilhavý, Equilibrium of phases with interfacial energy: a variational approach. J. Elasticity 105 (2011) 271–303. | DOI | MR | Zbl

[63] M. Šilhavý, A variational approach to nonlinear electro-magneto-elasticity: convexity conditions and existence theorems. Math. Mech. Solids, 23 (2018) 907–928. | DOI | MR | Zbl

[64] U. Stefanelli, Existence for dislocation-free finite plasticity. ESAIM: COCV 25 (2019) 20. | Numdam | MR | Zbl

[65] E.M. Stein, Singular integrals and differentiability properties of functions. Princeton University Press, Princeton, New Jersey (1970) | MR | Zbl

[66] M.D. Uchic, D.M. Dimiduk, J.N. Florando and W.D. Nix, Sample dimensions influence strength and crystal plasticity. Science, 305 (2004) 986–989. | DOI

[67] M. Zaiser, M. Carmen Miguel and I. Groma, Statistical dynamics of dislocation systems: The influence of dislocation-dislocation correlations. Phys. Rev. B 64 (2001) 224102. | DOI

Cité par Sources :