Minimizers of the prescribed curvature functional in a Jordan domain with no necks
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 76.

We provide a geometric characterization of the minimal and maximal minimizer of the prescribed curvature functional P(E) − κ|E| among subsets of a Jordan domain Ω with no necks of radius κ−1, for values of κ greater than or equal to the Cheeger constant of Ω. As an application, we describe all minimizers of the isoperimetric profile for volumes greater than the volume of the minimal Cheeger set, relative to a Jordan domain Ω which has no necks of radius r, for all r. Finally, we show that for such sets and volumes the isoperimetric profile is convex.

DOI : 10.1051/cocv/2020030
Classification : 49Q10, 35J93, 49Q20
Mots-clés : Perimeter minimizer, prescribed mean curvature, Cheeger constant
@article{COCV_2020__26_1_A76_0,
     author = {Leonardi, Gian Paolo and Saracco, Giorgio},
     title = {Minimizers of the prescribed curvature functional in a {Jordan} domain with no necks},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020030},
     mrnumber = {4156828},
     zbl = {1459.49029},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020030/}
}
TY  - JOUR
AU  - Leonardi, Gian Paolo
AU  - Saracco, Giorgio
TI  - Minimizers of the prescribed curvature functional in a Jordan domain with no necks
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020030/
DO  - 10.1051/cocv/2020030
LA  - en
ID  - COCV_2020__26_1_A76_0
ER  - 
%0 Journal Article
%A Leonardi, Gian Paolo
%A Saracco, Giorgio
%T Minimizers of the prescribed curvature functional in a Jordan domain with no necks
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020030/
%R 10.1051/cocv/2020030
%G en
%F COCV_2020__26_1_A76_0
Leonardi, Gian Paolo; Saracco, Giorgio. Minimizers of the prescribed curvature functional in a Jordan domain with no necks. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 76. doi : 10.1051/cocv/2020030. http://www.numdam.org/articles/10.1051/cocv/2020030/

[1] F. Alter, V. Caselles and A. Chambolle, A characterization of convex calibrable sets in n . Math. Ann. 332 (2005) 329–366. | DOI | MR | Zbl

[2] A. Alvino, F. Brock, F. Chiacchio, A. Mercaldo and M.R. Posteraro, Some isoperimetric inequalities on N with respect to weights | x | α . J. Math. Anal. Appl. 451 (2017) 280–318. | DOI | MR

[3] A. Alvino, F. Brock, F. Chiacchio, A. Mercaldo and M.R. Posteraro, On weighted isoperimetric inequalities with non-radial densities. Appl. Anal. 98 (2019) 1935–1945. | DOI | MR | Zbl

[4] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discountinuity Problems. Oxford University Press, Oxford (2000). | DOI | MR | Zbl

[5] L. Ambrosio, V. Caselles, S. Masnou and J.-M. Morel, Connected components of sets of finite perimeter and applications to image processing. J. Eur. Math. Soc. 3 (2001) 39–92. | DOI | MR | Zbl

[6] E. Barozzi, E. Gonzalez and U. Massari, The mean curvature of a Lipschitz continuous manifold. Rend. Mat. Acc. Lincei 14 (2003) 257–277. | MR | Zbl

[7] F. Bethuel, P. Caldiroli and M. Guida, Parametric surfaces with prescribed mean curvature. Rend. Sem. Mat. Univ. Torino 60 (2002) 175–231. | MR | Zbl

[8] G. Buttazzo and E. Stepanov, Optimal transportation networks as free Dirichlet regions for the Monge–Kantorovich problem. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 2 (2003) 631–678. | Numdam | MR | Zbl

[9] X. Cabré and X. Ros-Oton, Sobolev and isoperimetric inequalities with monomial weights. J. Differ. Equ. 255 (2013) 4312–4336. | DOI | MR | Zbl

[10] V. Caselles, M. Jr. Miranda and M. Novaga, Total variation and Cheeger sets in Gauss space. J. Funct. Anal. 259 (2010) 1491–1516. | DOI | MR | Zbl

[11] J.T. Chen, On the existence of capillary free surfaces in the absence of gravity. Pac. J. Math. 88 (1980) 323–361. | DOI | MR | Zbl

[12] G. Crasta and I. Fragalà, On the Dirichlet and Serrin problems for the inhomogeneous infinity Laplacian in convex domains: regularity and geometric results. Arch. Rational Mech. Anal. 218 (2015) 1577–1607. | DOI | MR | Zbl

[13] G. Csató, An isoperimetric problem with density and the Hardy Sobolev inequality in ℝ2. Diff. Int. Equ. 28 (2015) 971–988. | MR | Zbl

[14] D. De Ford, H. Lavenant, Z. Schutzman and J. Solomon, Total variation isoperimetric profiles. SIAM J. Appl. Algebra Geom. 3 (2019) 585–613. | DOI | MR | Zbl

[15] H. Federer, Curvature measures. Trans. Amer. Math. Soc. 93 (1959) 418–491. | DOI | MR | Zbl

[16] H. Federer, Geometric Measure Theory, volume 153 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag New York Inc., New York (1969). | MR | Zbl

[17] R. Finn and E. Giusti, Existence and non existence of capillary surfaces. Manuscr. Math. 28 (1979) 1–11. | DOI | MR | Zbl

[18] R. Finn and E. Giusti, Nonexistence and existence of capillary surfaces. Manuscr. Math. 28 (1979) 13–20. | DOI | MR | Zbl

[19] R. Finn and A.A. Jr., Kosmodem’Yanskii. Some unusual comparison properties of capillary surfaces. Pac. J. Math. 205 (2002) 119–137. | DOI | MR | Zbl

[20] M. Giaquinta, Regolarità delle superfici BV ( Ω ) con curvatura media assegnata. Boll. Un. Mat. Ital. 8 (1973) 567–578. | MR | Zbl

[21] M. Giaquinta, On the Dirichlet problem for surfaces of prescribed mean curvature. Manuscr. Math. 12 (1974) 73–86. | DOI | MR | Zbl

[22] E. Giusti, On the equation of surfaces of prescribed mean curvature. Existence and uniqueness without boundary conditions. Invent. Math. 46 (1978) 111–137. | DOI | MR | Zbl

[23] M. Goldman and M. Novaga, Volume-constrained minimizers for the prescribed curvature problem in periodic media. Calc. Var. Partial Diff. Equ. 44 (2012) 297–318. | DOI | MR | Zbl

[24] E. Gonzalez, U. Massari and I. Tamanini, Minimal boundaries enclosing a given volume. Manuscr. Math. 34 (1981) 381–395. | DOI | MR | Zbl

[25] M. Guida and S. Rolando, Symmetric κ -loops. Diff. Int. Equ. 23 (2010) 861–898. | MR | Zbl

[26] X. Huang, Closed surface with prescribed mean curvature in ℝ3. Sci. China 34 (1991) 10. | MR | Zbl

[27] B. Kawohl and T. Lachand-Robert, Characterization of Cheeger sets for convex subsets of the plane. Pac. J. Math. 225 (2006) 103–118. | DOI | MR | Zbl

[28] D. Krejčiřík and A. Pratelli, The Cheeger constant of curved strips. Pac. J. Math. 254 (2011) 309–333. | DOI | MR | Zbl

[29] E. Kuwert, Geometric Analysis and Nonlinear Partial Differential Equations, chapter Note on the Isoperimetric Profile of a Convex Body, Springer, Berlin (2003), pp. 195–200. | DOI | MR | Zbl

[30] G.P. Leonardi, An overview on the Cheeger problem. In New Trends in Shape Optimization, volume 166 of International Series of Numerical Mathematics. Springer International Publishing, Berlin (2015) 117–139. | DOI | MR | Zbl

[31] G.P. Leonardi and A. Pratelli, On the Cheeger sets in strips and non-convex domains. Calc. Var. Partial Differ. Equ. 55 (2016) 15. | DOI | MR | Zbl

[32] G.P. Leonardi and G. Saracco, The prescribed mean curvature equation in weakly regular domains. Nonlinear Differ. Equ. Appl. 25 (2018) 9. | DOI | MR | Zbl

[33] G.P. Leonardi and G. Saracco, Two examples of minimal Cheeger sets in the plane. Ann. Mat. Pura Appl. 197 (2018) 1511–1531. | DOI | MR | Zbl

[34] G.P. Leonardi, R. Neumayer and G. Saracco, The Cheeger constant of a Jordan domain without necks. Calc. Var. Partial Differ. Equ. 56 (2017) 164. | DOI | MR | Zbl

[35] G.P. Leonardi, M. Ritoré and E. Vernadakis, Isoperimetric inequalities in unbounded convex bodies. To appear in Mem. Amer. Math. Soc. | MR | Zbl

[36] F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems, volume 135 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2012). | MR | Zbl

[37] U. Massari, Esistenza e regolarità delle ipersuperfici di curvatura media assegnata in n . Arch. Rational Mech. Anal. 55 (1974) 357–382. | DOI | MR | Zbl

[38] F. Morgan and A. Ros, Stable constant-mean-curvature hypersurfaces are area minimizing in small $L^1$ neighborhoods. Interfaces Free Bound. 12 (2010) 151–155. | DOI | MR | Zbl

[39] E. Parini, An introduction to the Cheeger problem. Surv. Math. Appl. 6 (2011) 9–21. | MR | Zbl

[40] A. Pratelli and G. Saracco, On the generalized Cheeger problem and an application to 2d strips. Rev. Mat. Iberoam. 33 (2017) 219–237. | DOI | MR | Zbl

[41] A. Pratelli and G. Saracco, On the isoperimetric problem with double density. Nonlinear Anal. 177 (2018) 733–752. | DOI | MR | Zbl

[42] A. Pratelli and G. Saracco, The ϵ - ϵ β property in the isoperimetric problem with double density, and the regularity of isoperimetric sets. Adv. Nonlinear Stud. Ahead of publication. | MR | Zbl

[43] H. Sagan, Space-Filling Curves. Springer, New York (1994). | DOI | MR | Zbl

[44] G. Saracco, Weighted Cheeger sets are domains of isoperimetry. Manuscr. Math. 156 (2018) 371–381. | DOI | MR | Zbl

[45] G. Saracco, A sufficient criterion to determine planar self-Cheeger sets, 2019. | arXiv | MR

[46] A. Saracco and G. Saracco, A discrete districting plan. Netw. Heterog. Media 14 (2019) 771–788. | DOI | MR | Zbl

[47] E. Stredulinsky and W.P. Ziemer, Area minimizing sets subject to a volume constraint in a convex set. J. Geom. Anal. 7 (1997) 653–677. | DOI | MR | Zbl

[48] P. Tilli, Some explicit examples of minimizers for the irrigation problem. J. Convex Anal. 17 (2010) 583–595. | MR | Zbl

[49] A. Treibergs and S.W. Wei, Embedded hyperspheres with prescribed mean curvature. J. Differ. Geom. 18 (1983) 513–521. | DOI | MR | Zbl

[50] S.T. Yau, Problem section. In Seminar on Differential Geometry, volume 102. Princeton University Press, Princeton, N.J. (1982) 669–706. | MR | Zbl

Cité par Sources :

G. P. L. and G. S. have been partially supported by the INdAM-GNAMPA Project 2019 “Problemi isoperimetrici in spazi Euclidei e non” (n. prot. U-UFMBAZ-2019-000473 11-03-2019).