Stochastic optimal control of a evolutionary p -Laplace equation with multiplicative Lévy noise
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 100.

In this article, we are interested in an initial value optimal control problem for a evolutionary p-Laplace equation driven by multiplicative Lévy noise. We first present wellposedness of a weak solution by using an implicit time discretization of the problem, along with the Jakubowski version of the Skorokhod theorem for a non-metric space. We then formulate associated control problem, and establish existence of an optimal solution by using variational method and exploiting the convexity property of the cost functional.

DOI : 10.1051/cocv/2020028
Classification : 45K05, 46S50, 49L20, 49L25, 91A23, 93E20
Mots-clés : Evolutionary $p$-Laplace equation, stochastic PDEs, weak solution, Skorokhod theorem
@article{COCV_2020__26_1_A100_0,
     author = {Majee, Ananta K.},
     title = {Stochastic optimal control of a evolutionary $p${-Laplace} equation with multiplicative {L\'evy} noise},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020028},
     mrnumber = {4185059},
     zbl = {1465.45010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020028/}
}
TY  - JOUR
AU  - Majee, Ananta K.
TI  - Stochastic optimal control of a evolutionary $p$-Laplace equation with multiplicative Lévy noise
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020028/
DO  - 10.1051/cocv/2020028
LA  - en
ID  - COCV_2020__26_1_A100_0
ER  - 
%0 Journal Article
%A Majee, Ananta K.
%T Stochastic optimal control of a evolutionary $p$-Laplace equation with multiplicative Lévy noise
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020028/
%R 10.1051/cocv/2020028
%G en
%F COCV_2020__26_1_A100_0
Majee, Ananta K. Stochastic optimal control of a evolutionary $p$-Laplace equation with multiplicative Lévy noise. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 100. doi : 10.1051/cocv/2020028. http://www.numdam.org/articles/10.1051/cocv/2020028/

[1] P. Billingsley, Convergence of Probability measures, 2nd edn. Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., New York (1999). | DOI | MR | Zbl

[2] I.H. Biswas, K.H. Karlsen and A.K. Majee, Conservation laws driven by Lévy white noise. J. Hyperb. Differ. Equ. 12 (2015) 581–654. | DOI | MR | Zbl

[3] D. Blackwell and L.E. Dubins, An extension of Skorokhod’s almost sure representation theorem. Proc. Am. Math. Soc. 89 (1983) 691–692. | MR | Zbl

[4] Z. Brzeźniak and E. Hausenblas, Maximal regularity for stochastic convolutions driven by Lévy processes. Probab. Theory Relat. Fields 145 (2009) 615–637. | DOI | MR | Zbl

[5] Z. Brzeźniak and E. Motyl, Existence of a martingale solution of the stochastic Navier-Stokes equations in unbounded 2D and 3D domains. J. Differ. Equ. 254 (2013) 1627–1685. | DOI | MR | Zbl

[6] Z. Brzeźniak and R. Serrano, Optimal relaxed control of dissipative stochastic partial differential equations in Banach spaces. SIAM J. Control Optim. 51 (2013) 2664–2703. | DOI | MR | Zbl

[7] Z. Brzeźniak, E. Hausenblas and P.A. Razafimandimby, Stochastic reaction diffusion equation driven by jump processes. Potential Anal. 49 (2018) 131–201. | DOI | MR | Zbl

[8] E. Dibenedetto, Degenerate parabolic equations. Springer, New York (1993). | DOI | MR | Zbl

[9] T. Dunst, A.K. Majee, A. Prohl, G. Vallet, On Stochastic Optimal Control in Ferromagnetism. Arch. Ration. Mech. Anal. 233 (2019) 1383–1440. | DOI | MR | Zbl

[10] X. Fernique, Un modèle presque sûr pour la convergence en loi. (French) [An almost sure model for weak convergence]. C. R. Acad. Sci. 306 (1988) 335–338. | MR | Zbl

[11] W. Grecksch and C. Tudor, Stochastic Evolution Equations. A Hilbert space approach. Mathematical Research, Vol. 85. Akademie-Verlag, Berlin (1995). | MR | Zbl

[12] I. Gyöngy and N. Krylov, Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Relat. Fields 105 (1996) 143–158. | DOI | MR | Zbl

[13] N. Ikeda, and S. Watanabe, Stochastic Differential Equations and Diffusion Processes. NorthHolland Publishing Company, Amsterdam (1981). | MR | Zbl

[14] A. Jakubowski, The almost sure Skorokhod representation for subsequences in nonmetric spaces. Theory Probab. Appl. 42 (1998) 164–174. | DOI | MR | Zbl

[15] W. Liu and M. Röckner, Stochastic partial differential equations: an introduction. Springer, Cham (2015). | MR

[16] M. Métivier, Stochastic partial differential equations in infinite dimensional spaces. Scuola Normale Superiore, Pisa (1988). | MR | Zbl

[17] M. Métivier and M. Viot, On weak solutions of stochastic partial differential equations. Vol. 1322 of Lect. Notes Math. (1988) 139–150. | DOI | MR | Zbl

[18] R. Mikulevicius and B.L. Rozovskii, Global L2-solutions of stochastic Navier-Stokes equations. Ann. Probab. 33 (2005) 137–176. | DOI | MR | Zbl

[19] E. Motyl, Stochastic Navier-Stokes Equations Driven by Lévy Noise in Unbounded 3D Domains. Potential Anal. 38 (2013) 863–912. | MR | Zbl

[20] E. Nabana, Uniqueness for positive solutions of p -Laplacian problem in an annulus. Ann. Fac. Sci. Toulouse Math. 8 (1999) 143–154. | DOI | Numdam | MR | Zbl

[21] N. Nagase and M. Nisio, Optimal controls for stochastic partial differential equations. SIAM. Control Optim. 28 (1990) 186–213. | DOI | MR | Zbl

[22] M. Ondreját, Uniqueness for stochastic evolution equations in Banach spaces. Dissertationes Mathematicae 426 (2004) 1–63. | DOI | MR | Zbl

[23] E. Pardoux, Équations aux dérivées partielles stochastiques non linéaires monotones. Ph.D. thesis, University of Paris Sud, France (1975).

[24] K.R. Parthasarathy, Probability measures on metric spaces. Academic Press, New York (1967). | MR | Zbl

[25] S. Peszat and J. Zabczyk. Stochastic partial differential equations with Lévy noise, volume 113 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2007). | MR | Zbl

[26] T. Roubíček, Nonlinear Partial Differential Equations with Applications. Springer, Basel (2013). | DOI | MR | Zbl

[27] A.V. Skorokhod, Limit theorems for stochastic processes. Theor. Probab. Appl. 1 (1956) 261–290. | DOI | MR | Zbl

[28] G. Vallet and A. Zimmermann, Well-posedness for a pseudomonotone evolution problem with multiplicative noise. J. Evol. Equ. 19 (2019) 153–202. | DOI | MR | Zbl

[29] A.W. Van Der Vaart and J.A. Wellner, Weak convergence and empirical processes with applications to statistics. Springer Series in Statistics. Springer-Verlag, New York (1996). | MR | Zbl

[30] S. Watanabe and T. Yamada, On the uniqueness of solutions of stochastic differential equations. II. J. Math. Kyoto Univ. 11 (1971) 155–167. | MR | Zbl

[31] Z. Wu, J. Zhao, J. Yin and H. Li, Nonlinear diffusion equations. World Scientific Publising, Singapore (2001). | DOI | Zbl

[32] J.N. Zhao, On the Cauchy problem and initial traces for the evolution p-laplacian equation with strongly nonlinear sources. J. Differ. Equ. 121 (1995) 329–383. | DOI | MR | Zbl

Cité par Sources :