This paper is concerned with a constrained stochastic linear-quadratic optimal control problem, in which the terminal state is fixed and the initial state is constrained to lie in a stochastic linear manifold. The controllability of stochastic linear systems is studied. Then the optimal control is explicitly obtained by considering a parameterized unconstrained backward LQ problem and an optimal parameter selection problem. A notable feature of our results is that, instead of solving an equation involving derivatives with respect to the parameter, the optimal parameter is characterized by a matrix equation.
Mots-clés : Linear-quadratic, optimal control, controllability, controllability Gramian, Lagrange multiplier, optimal parameter, Riccati equation
@article{COCV_2020__26_1_A98_0, author = {Bi, Xiuchun and Sun, Jingrui and Xiong, Jie}, title = {Optimal control for controllable stochastic linear systems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {26}, year = {2020}, doi = {10.1051/cocv/2020027}, mrnumber = {4185058}, zbl = {1459.49019}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2020027/} }
TY - JOUR AU - Bi, Xiuchun AU - Sun, Jingrui AU - Xiong, Jie TI - Optimal control for controllable stochastic linear systems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2020 VL - 26 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2020027/ DO - 10.1051/cocv/2020027 LA - en ID - COCV_2020__26_1_A98_0 ER -
%0 Journal Article %A Bi, Xiuchun %A Sun, Jingrui %A Xiong, Jie %T Optimal control for controllable stochastic linear systems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2020 %V 26 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2020027/ %R 10.1051/cocv/2020027 %G en %F COCV_2020__26_1_A98_0
Bi, Xiuchun; Sun, Jingrui; Xiong, Jie. Optimal control for controllable stochastic linear systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 98. doi : 10.1051/cocv/2020027. http://www.numdam.org/articles/10.1051/cocv/2020027/
[1] Indefinite stochastic linear quadratic control and generalized differential Riccati equation. SIAM J. Control Optim. 40 (2002) 1296–1311. | DOI | MR | Zbl
, and ,[2] Lectures on stochastic control, in Nonlinear Filtering and Stochastic Control, Vol. 972 of Lecture Notes in Mathematics. Springer-Verlag, New York (1982) 1–62. | DOI | MR
,[3] Contrôle des systems linéaires quadratiques: applications de l’intégrale stochastique, in Séminaire de Probabilités XII, edited dy , and . Vol. 649 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1978) 180–264. | DOI | Numdam | MR | Zbl
,[4] Stochastic linear quadratic optimal control problems. Appl. Math. Optim. 43 (2001) 21–45. | DOI | MR | Zbl
and ,[5] Stochastic minimum-energy control. Syst. Control Lett. 85 (2015) 70–76. | DOI | MR
,[6] Linear quadratic optimal control problems for mean-field backward stochastic differential equations. Appl. Math. Optim. 80 (2019) 223–250. | DOI | MR | Zbl
, and ,[7] Linear-quadratic control of backward stochastic differential equations. SIAM J. Control Optim. 40 (2001) 450–474. | DOI | MR | Zbl
and ,[8] On controllability for stochastic control systems when the coefficient is time-variant. J. Syst. Sci. Complex 23 (2010) 270–278. | DOI | MR | Zbl
and ,[9] Characterization of optimal feedback for stochastic linear quadratic control problems. Probab. Uncertain. Quant. Risk 2 (2017) 11. | DOI | MR | Zbl
, and ,[10] Backward stochastic differential equation and exact controllability of stochastic control systems. Prog. Nat. Sci. 4 (1994) 274–284. | MR
,[11] Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems. SIAM J. Control Optim. 54 (2016) 2274–2308. | DOI | MR | Zbl
, and ,[12] Indefnite stochastic linear-quadratic optimal control problems with random coefcients: Closed-loop representation of open-loop optimal controls. (2018). | arXiv
, and ,[13] General linear quadratic optimal stochastic control problems with random coefficients: Linear stochastic Hamilton systems and backward stochastic Riccati equations. SIAM J. Control Optim. 42 (2003) 53–75. | DOI | MR | Zbl
,[14] Weak closed-loop solvability of stochastic linear-quadratic optimal control problems. Discrete Contin. Dyn. Syst. Ser. A 39 (2019) 2785–2805. | DOI | MR | Zbl
, and ,[15] Exact controllability of linear stochastic differential equations and related problems. Math. Control Relat. Fields 7 (2017) 305–345. | DOI | MR | Zbl
, , and ,[16] The norm optimal control problem for stochastic linear control systems. ESAIM: COCV 21 (2015) 399–413. | Numdam | MR | Zbl
and ,[17] On a matrix Riccati equation of stochastic control. SIAM J. Control 6 (1968) 681–697. | DOI | MR | Zbl
,[18] Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag, New York (1999). | DOI | MR | Zbl
and ,[19] Equivalent cost functionals and stochastic linear quadratic optimal control problems. ESAIM: COCV 19 (2013) 78–90. | Numdam | MR | Zbl
,Cité par Sources :