In this paper we show the stability of the ball as maximizer of the Riesz potential among sets of given volume. The stability is proved with sharp exponent 1∕2, and is valid for any dimension N ≥ 2 and any power 1 < α < N.
Mots-clés : Sharp inequalities, Riesz inequalities, Optimality conditions
@article{COCV_2020__26_1_A113_0, author = {Fusco, Nicola and Pratelli, Aldo}, title = {Sharp stability for the {Riesz} potential}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {26}, year = {2020}, doi = {10.1051/cocv/2020024}, mrnumber = {4185064}, zbl = {1473.26036}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2020024/} }
TY - JOUR AU - Fusco, Nicola AU - Pratelli, Aldo TI - Sharp stability for the Riesz potential JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2020 VL - 26 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2020024/ DO - 10.1051/cocv/2020024 LA - en ID - COCV_2020__26_1_A113_0 ER -
Fusco, Nicola; Pratelli, Aldo. Sharp stability for the Riesz potential. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 113. doi : 10.1051/cocv/2020024. http://www.numdam.org/articles/10.1051/cocv/2020024/
[1] Minimality via second variation for a nonlocal isoperimetric problem. Comm. Math. Phys. 322 (2013) 515–557. | DOI | MR | Zbl
, and ,[2] Mathematical Aspects of Evolving Interfaces, Vol. 1812 of Lecture Notes in Mathematics. Springer, Berlin (2003) 1–52. | Zbl
,[3] A note on the Sobolev inequality. J. Funct. Anal. 100 (1991) 18–24. | DOI | MR | Zbl
and ,[4] Faber-Krahn inequalities in sharp quantitative form. Duke Math. J. 164 (2015) 1777–1831. | DOI | MR | Zbl
, and ,[5] Geometric stability of the Coulomb energy. Calc. Var. PDE 54 (2015) 3241–3250. | DOI | MR | Zbl
and ,[6] A sharpened Riesz-Sobolev inequality, preprint. Preprint (2017). | arXiv
,[7] A selection principle for the sharp quantitative isoperimetric inequality, Arch. Ration. Mech. Anal. 206 (2012) 617–643. | DOI | MR | Zbl
and ,[8] Isoperimetry and stability properties of balls with respect to nonlocal energies. Comm. Math. Phys. 336 (2015) 441–507. | DOI | MR | Zbl
, , , and ,[9] Proof of spherical flocking based on quantitative rearrangement inequalities. Preprint (2019). | arXiv | MR
and ,[10] A note on a theorem of M. Christ. Preprint (2019). | arXiv
and ,[11] Stability in the isoperimetric problem for convex or nearly spherical domains in . Trans. Amer. Math. Soc. 314 (1989) 619–638. | MR | Zbl
,[12] The sharp quantitative isoperimetric inequality. Ann. Math. 168 (2008) 941–980. | DOI | MR | Zbl
, and ,[13] Graduate Studies in Mathematics, 2nd edn. Vol 14. American Mathematical Society, Providence, RI (2001). | DOI | MR | Zbl
and ,[14] The concentration-compactness principle in the calculus of variations. The locally compact case. Part I. Ann. Inst. Henri Poincaré Anal. Non Linéaire 1 (1984) 109–145. | DOI | Numdam | MR | Zbl
,[15] Variational Methods. Applications to nonlinear partial differential equations and Hamiltonian systems. 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 34. Springer-Verlag, Berlin (1996). | MR | Zbl
,[16] Topics in Optimal transportation, Graduate studies in Mathematics, Vol. 58. AMS, Providence, RI (2003). | MR | Zbl
,Cité par Sources :