Sharp stability for the Riesz potential
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 113.

In this paper we show the stability of the ball as maximizer of the Riesz potential among sets of given volume. The stability is proved with sharp exponent 1∕2, and is valid for any dimension N ≥ 2 and any power 1 < α < N.

DOI : 10.1051/cocv/2020024
Classification : 49J40, 49K40, 26D20
Mots-clés : Sharp inequalities, Riesz inequalities, Optimality conditions
@article{COCV_2020__26_1_A113_0,
     author = {Fusco, Nicola and Pratelli, Aldo},
     title = {Sharp stability for the {Riesz} potential},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020024},
     mrnumber = {4185064},
     zbl = {1473.26036},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020024/}
}
TY  - JOUR
AU  - Fusco, Nicola
AU  - Pratelli, Aldo
TI  - Sharp stability for the Riesz potential
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020024/
DO  - 10.1051/cocv/2020024
LA  - en
ID  - COCV_2020__26_1_A113_0
ER  - 
%0 Journal Article
%A Fusco, Nicola
%A Pratelli, Aldo
%T Sharp stability for the Riesz potential
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020024/
%R 10.1051/cocv/2020024
%G en
%F COCV_2020__26_1_A113_0
Fusco, Nicola; Pratelli, Aldo. Sharp stability for the Riesz potential. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 113. doi : 10.1051/cocv/2020024. http://www.numdam.org/articles/10.1051/cocv/2020024/

[1] E. Acerbi, N. Fusco and M. Morini, Minimality via second variation for a nonlocal isoperimetric problem. Comm. Math. Phys. 322 (2013) 515–557. | DOI | MR | Zbl

[2] L. Ambrosio, Mathematical Aspects of Evolving Interfaces, Vol. 1812 of Lecture Notes in Mathematics. Springer, Berlin (2003) 1–52. | Zbl

[3] G. Bianchi and H. Egnell, A note on the Sobolev inequality. J. Funct. Anal. 100 (1991) 18–24. | DOI | MR | Zbl

[4] L. Brasco, G. De Philippis and B. Velichkov, Faber-Krahn inequalities in sharp quantitative form. Duke Math. J. 164 (2015) 1777–1831. | DOI | MR | Zbl

[5] A. Burchard and G. Chambers, Geometric stability of the Coulomb energy. Calc. Var. PDE 54 (2015) 3241–3250. | DOI | MR | Zbl

[6] M. Christ, A sharpened Riesz-Sobolev inequality, preprint. Preprint (2017). | arXiv

[7] M. Cicalese and G.P. Leonardi, A selection principle for the sharp quantitative isoperimetric inequality, Arch. Ration. Mech. Anal. 206 (2012) 617–643. | DOI | MR | Zbl

[8] A. Figalli, N. Fusco, F. Maggi, V. Millot and M. Morini, Isoperimetry and stability properties of balls with respect to nonlocal energies. Comm. Math. Phys. 336 (2015) 441–507. | DOI | MR | Zbl

[9] R. Frank and E. Lieb, Proof of spherical flocking based on quantitative rearrangement inequalities. Preprint (2019). | arXiv | MR

[10] R. Frank and E. Lieb, A note on a theorem of M. Christ. Preprint (2019). | arXiv

[11] B. Fuglede, Stability in the isoperimetric problem for convex or nearly spherical domains in n . Trans. Amer. Math. Soc. 314 (1989) 619–638. | MR | Zbl

[12] N. Fusco, F. Maggi and A. Pratelli, The sharp quantitative isoperimetric inequality. Ann. Math. 168 (2008) 941–980. | DOI | MR | Zbl

[13] E. Lieb and M. Loss, Graduate Studies in Mathematics, 2nd edn. Vol 14. American Mathematical Society, Providence, RI (2001). | DOI | MR | Zbl

[14] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part I. Ann. Inst. Henri Poincaré Anal. Non Linéaire 1 (1984) 109–145. | DOI | Numdam | MR | Zbl

[15] M. Struwe, Variational Methods. Applications to nonlinear partial differential equations and Hamiltonian systems. 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 34. Springer-Verlag, Berlin (1996). | MR | Zbl

[16] C. Villani, Topics in Optimal transportation, Graduate studies in Mathematics, Vol. 58. AMS, Providence, RI (2003). | MR | Zbl

Cité par Sources :