In this paper we are concerned with generalised L1-minimisation problems, i.e. Bolza problems involving the absolute value of the control with a control-affine dynamics. We establish sufficient conditions for the strong local optimality of extremals given by the concatenation of bang, singular and inactive (zero) arcs. The sufficiency of such conditions is proved by means of Hamiltonian methods. As a by-product of the result, we provide an explicit invariant formula for the second variation along the singular arc.
Mots-clés : Sufficient optimality conditions, control-affine systems, singular control, $L^1$ minimisation, minimum fuel problem
@article{COCV_2020__26_1_A99_0, author = {Chittaro, Francesca C. and Poggiolini, Laura}, title = {Singular extremals in $L^1$-optimal control problems: sufficient optimality conditions}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {26}, year = {2020}, doi = {10.1051/cocv/2020023}, mrnumber = {4185063}, zbl = {1471.49004}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2020023/} }
TY - JOUR AU - Chittaro, Francesca C. AU - Poggiolini, Laura TI - Singular extremals in $L^1$-optimal control problems: sufficient optimality conditions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2020 VL - 26 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2020023/ DO - 10.1051/cocv/2020023 LA - en ID - COCV_2020__26_1_A99_0 ER -
%0 Journal Article %A Chittaro, Francesca C. %A Poggiolini, Laura %T Singular extremals in $L^1$-optimal control problems: sufficient optimality conditions %J ESAIM: Control, Optimisation and Calculus of Variations %D 2020 %V 26 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2020023/ %R 10.1051/cocv/2020023 %G en %F COCV_2020__26_1_A99_0
Chittaro, Francesca C.; Poggiolini, Laura. Singular extremals in $L^1$-optimal control problems: sufficient optimality conditions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 99. doi : 10.1051/cocv/2020023. http://www.numdam.org/articles/10.1051/cocv/2020023/
[1] Control Theory from the Geometric Viewpoint. Springer-Verlag, Berlin (2004). | DOI | MR | Zbl
and ,[2] An invariant second variation in optimal control. Internat. J. Control 71 (1998) 689–7158. | DOI | MR | Zbl
, and ,[3] Strong minima in optimal control. Proc. Steklov Inst. Math. 220 (1998) 4–26. translation from Tr. Mat. Inst. Steklova 220 (1998) 8–22. | MR | Zbl
, and ,[4] Strong optimality for a bang-bang trajectory. SIAM J. Control Optim. 41 (2002) 991–1014. | DOI | MR | Zbl
, and ,[5] The inactivation principle: Mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements. PLoS Comput. Biol. 4 (2008) 10. | DOI | MR
, , , , and ,[6] Consumption minimisation for an academic vehicle. Optim. Control Appl. Methods 41 (2020) 1001–1370. | MR | Zbl
and ,[7] $L^1$ minimization for mechanical systems. SIAM J. Control. Optim. 54 (2016) 1245–1265. | DOI | MR | Zbl
, and ,[8] $L^1$-optimality conditions for the circular restricted three-body problem. Celestial Mechanics and Dynamical Astronomy 126 (2016) 461–481. | DOI | MR | Zbl
,[9] Optimality conditions for extremals containing bang and inactivated arcs, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (2017). | DOI
and ,[10] Strong local optimality for generalized optimal control problems. J. Optim. Theory Appl. 180 (2019) 207–234. | DOI | MR | Zbl
and ,[11] Singular extremals in multi–input time–optimal problem: a sufficient condition. Control and Cybernetics 39 (2010) 1029–1068. | MR | Zbl
and ,[12] Minimum-time strong optimality of a singular arc: The multi-input non involutive case. ESAIM: COCV 22 (2016) 786–810. | Numdam | MR | Zbl
and ,[13] On the inverse function theorem. Pacific J. Math. 64 (1976) 97–102. | DOI | MR | Zbl
,[14] Optimization and nonsmooth analysis, Unrev. reprinting of the orig., publ. by Wiley, Hoboken 1983. Montréal: Centre de Recherches Mathématiques, Université de Montréal (1989). | MR | Zbl
,[15] Calculus of Variations and Optimal Control Theory. John Wiley & Sons, New York, New York (1966). | MR | Zbl
,[16] Optimal control on manifolds: Optimality conditions via nonsmooth analysis. Commun. Appl. Anal. 18 (2014) 563–590. | Zbl
and ,[17] Introduction to Mechanics and Symmetry. Springer-Verlag, New York (1994). | DOI | MR | Zbl
and ,[18] Maximum hands-off control: A paradigm of control effort minimization. IEEE Trans. Automat. Control 61 (2015) 735–747. | DOI | MR | Zbl
, and ,[19] On local state optimality of bang-bang extremals in a free horizon Bolza problem. Rendiconti del Seminario Matematico dell’Università e del Politecnico di Torino 64 (2006) 1–23. | MR | Zbl
,[20] State-local optimality of a bang-bang trajectory: a Hamiltonian approach. Sys. Control Lett. 53 (2004) 269–279. | DOI | MR | Zbl
and ,[21] Sufficient optimality conditions for a bang-bang trajectory in a Bolza problem. Mathematical Control Theory and Finance. Edited by , , , and . Springer Berlin Heidelberg, (2008) 337–357. | DOI | MR | Zbl
and ,[22] Strong local optimality for a bang-bang trajectory in a Mayer problem. SIAM J. Control Optim. 49 (2011) 140–161. | DOI | MR | Zbl
and ,[23] Bang-singular-bang extremals: sufficient optimality conditions. J. Dyn. Control Sys. 17 (2011) 469–514. | DOI | MR | Zbl
and ,[24] On the minimum time problem for dodgem car-like bang-singular extremals, Large-Scale Scientific Computing, edited by , , and . Vol. 7116 of Lecture Notes in Computer Science. Springer, Berlin/Heidelberg (2012) 147–154. | DOI | MR | Zbl
and ,[25] Bang–bang trajectories with a double switching time in the minimum time problem. ESAIM: COCV 22 (2016) 688–709. | Numdam | MR | Zbl
and ,[26] Space trajectory optimization and -optimal control problems, Modern Astrodynamics, edited by . Vol. 1 of Elsevier Astrodynamics Series, Butterworth-Heinemann (2006) 155–VIII.
,[27] Trajectory planning of a free-flying robot by using the optimal control. Optim. Control Appl. Methods 20 (1999) 235–248. | DOI | MR
,[28] Strong optimality of singular trajectories, Geometric Control and Nonsmooth Analysis. Edited by , , , , and . Vol. 76 of Series on Advances in Mathematics for Applied Sciences. World Scientific Publishing Co. Pte. Ltd, Hackensack, NJ (2008) 300–326. | DOI | MR | Zbl
,[29] Constrained regular LQ-control problems. SIAM J. Control Optim. 35 (1997) 876–900. | DOI | MR | Zbl
and ,[30] Variational Methods in Imaging and Geometric Control, chapter A Hamiltonian approach to sufficiency in optimal control with minimal regularity conditions: Part I. De Gruyter (2016). | MR
and ,[31] A nonsmooth hybrid maximum principle. Stability and Stabilization of Nonlinear Systems. Edited by , , and . Springer, London (1999) 325–354. | DOI | MR | Zbl
,Cité par Sources :
This work has been supported by “National Group for Mathematical Analysis, Probability and their Applications” (GNAMPA-INdAM), by UTLN−Appel à projet “Chercheurs invités”, Université de Toulon, by Progetto Internazionalizzazione, Università degli Studi di Firenze and by CARTT - IUT de Toulon.