Singular extremals in L 1 -optimal control problems: sufficient optimality conditions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 99.

In this paper we are concerned with generalised L1-minimisation problems, i.e. Bolza problems involving the absolute value of the control with a control-affine dynamics. We establish sufficient conditions for the strong local optimality of extremals given by the concatenation of bang, singular and inactive (zero) arcs. The sufficiency of such conditions is proved by means of Hamiltonian methods. As a by-product of the result, we provide an explicit invariant formula for the second variation along the singular arc.

DOI : 10.1051/cocv/2020023
Classification : 49J15, 49J30, 49K30
Mots-clés : Sufficient optimality conditions, control-affine systems, singular control, $L^1$ minimisation, minimum fuel problem
@article{COCV_2020__26_1_A99_0,
     author = {Chittaro, Francesca C. and Poggiolini, Laura},
     title = {Singular extremals in $L^1$-optimal control problems: sufficient optimality conditions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020023},
     mrnumber = {4185063},
     zbl = {1471.49004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020023/}
}
TY  - JOUR
AU  - Chittaro, Francesca C.
AU  - Poggiolini, Laura
TI  - Singular extremals in $L^1$-optimal control problems: sufficient optimality conditions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020023/
DO  - 10.1051/cocv/2020023
LA  - en
ID  - COCV_2020__26_1_A99_0
ER  - 
%0 Journal Article
%A Chittaro, Francesca C.
%A Poggiolini, Laura
%T Singular extremals in $L^1$-optimal control problems: sufficient optimality conditions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020023/
%R 10.1051/cocv/2020023
%G en
%F COCV_2020__26_1_A99_0
Chittaro, Francesca C.; Poggiolini, Laura. Singular extremals in $L^1$-optimal control problems: sufficient optimality conditions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 99. doi : 10.1051/cocv/2020023. http://www.numdam.org/articles/10.1051/cocv/2020023/

[1] A.A. Agrachev and Yu. L. Sachkov, Control Theory from the Geometric Viewpoint. Springer-Verlag, Berlin (2004). | DOI | MR | Zbl

[2] A.A. Agrachev, G. Stefani and P. Zezza, An invariant second variation in optimal control. Internat. J. Control 71 (1998) 689–7158. | DOI | MR | Zbl

[3] A.A. Agrachev, G. Stefani and P. Zezza, Strong minima in optimal control. Proc. Steklov Inst. Math. 220 (1998) 4–26. translation from Tr. Mat. Inst. Steklova 220 (1998) 8–22. | MR | Zbl

[4] A.A. Agrachev, G. Stefani and P. Zezza, Strong optimality for a bang-bang trajectory. SIAM J. Control Optim. 41 (2002) 991–1014. | DOI | MR | Zbl

[5] B. Berret, C. Darlot, F. Jean, T. Pozzo, C. Papaxanthis and J.-P. Gauthier, The inactivation principle: Mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements. PLoS Comput. Biol. 4 (2008) 10. | DOI | MR

[6] N. Boizot and O. Oukacha, Consumption minimisation for an academic vehicle. Optim. Control Appl. Methods 41 (2020) 1001–1370. | MR | Zbl

[7] Z. Chen, J.-B. Caillau and Y. Chitour, $L^1$ minimization for mechanical systems. SIAM J. Control. Optim. 54 (2016) 1245–1265. | DOI | MR | Zbl

[8] Z. Chen, $L^1$-optimality conditions for the circular restricted three-body problem. Celestial Mechanics and Dynamical Astronomy 126 (2016) 461–481. | DOI | MR | Zbl

[9] F.C. Chittaro and L. Poggiolini, Optimality conditions for extremals containing bang and inactivated arcs, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (2017). | DOI

[10] F.C. Chittaro and L. Poggiolini, Strong local optimality for generalized L 1 optimal control problems. J. Optim. Theory Appl. 180 (2019) 207–234. | DOI | MR | Zbl

[11] F.C. Chittaro and G. Stefani, Singular extremals in multi–input time–optimal problem: a sufficient condition. Control and Cybernetics 39 (2010) 1029–1068. | MR | Zbl

[12] F.C. Chittaro and G. Stefani, Minimum-time strong optimality of a singular arc: The multi-input non involutive case. ESAIM: COCV 22 (2016) 786–810. | Numdam | MR | Zbl

[13] F.H. Clarke, On the inverse function theorem. Pacific J. Math. 64 (1976) 97–102. | DOI | MR | Zbl

[14] F.H. Clarke, Optimization and nonsmooth analysis, Unrev. reprinting of the orig., publ. by Wiley, Hoboken 1983. Montréal: Centre de Recherches Mathématiques, Université de Montréal (1989). | MR | Zbl

[15] M.R. Hestenes, Calculus of Variations and Optimal Control Theory. John Wiley & Sons, New York, New York (1966). | MR | Zbl

[16] R. Kipka and Yu. Ledyaev, Optimal control on manifolds: Optimality conditions via nonsmooth analysis. Commun. Appl. Anal. 18 (2014) 563–590. | Zbl

[17] J.E. Marsden and T.S. Ratiu, Introduction to Mechanics and Symmetry. Springer-Verlag, New York (1994). | DOI | MR | Zbl

[18] M. Nagahara, D.E. Quevedo and D. Nesic̀, Maximum hands-off control: A paradigm of control effort minimization. IEEE Trans. Automat. Control 61 (2015) 735–747. | DOI | MR | Zbl

[19] L. Poggiolini, On local state optimality of bang-bang extremals in a free horizon Bolza problem. Rendiconti del Seminario Matematico dell’Università e del Politecnico di Torino 64 (2006) 1–23. | MR | Zbl

[20] L. Poggiolini and G. Stefani, State-local optimality of a bang-bang trajectory: a Hamiltonian approach. Sys. Control Lett. 53 (2004) 269–279. | DOI | MR | Zbl

[21] L. Poggiolini and M. Spadini, Sufficient optimality conditions for a bang-bang trajectory in a Bolza problem. Mathematical Control Theory and Finance. Edited by A. Sarychev, A. Shiryaev, M. Guerra, and M. Grossinho. Springer Berlin Heidelberg, (2008) 337–357. | DOI | MR | Zbl

[22] L. Poggiolini and M. Spadini, Strong local optimality for a bang-bang trajectory in a Mayer problem. SIAM J. Control Optim. 49 (2011) 140–161. | DOI | MR | Zbl

[23] L. Poggiolini and G. Stefani, Bang-singular-bang extremals: sufficient optimality conditions. J. Dyn. Control Sys. 17 (2011) 469–514. | DOI | MR | Zbl

[24] L. Poggiolini and G. Stefani, On the minimum time problem for dodgem car-like bang-singular extremals, Large-Scale Scientific Computing, edited by I. Lirkov, S. Margenov, and J. Wasniewski. Vol. 7116 of Lecture Notes in Computer Science. Springer, Berlin/Heidelberg (2012) 147–154. | DOI | MR | Zbl

[25] L. Poggiolini and M. Spadini, Bang–bang trajectories with a double switching time in the minimum time problem. ESAIM: COCV 22 (2016) 688–709. | Numdam | MR | Zbl

[26] I.M. Ross, Space trajectory optimization and L 1 -optimal control problems, Modern Astrodynamics, edited by P. Gurfil. Vol. 1 of Elsevier Astrodynamics Series, Butterworth-Heinemann (2006) 155–VIII.

[27] Y. Sakawa, Trajectory planning of a free-flying robot by using the optimal control. Optim. Control Appl. Methods 20 (1999) 235–248. | DOI | MR

[28] G. Stefani, Strong optimality of singular trajectories, Geometric Control and Nonsmooth Analysis. Edited by F. Ancona, A. Bressan, P. Cannarsa, F. Clarke, and P. Wolenski. Vol. 76 of Series on Advances in Mathematics for Applied Sciences. World Scientific Publishing Co. Pte. Ltd, Hackensack, NJ (2008) 300–326. | DOI | MR | Zbl

[29] G. Stefani and P. Zezza, Constrained regular LQ-control problems. SIAM J. Control Optim. 35 (1997) 876–900. | DOI | MR | Zbl

[30] G. Stefani and P. Zezza, Variational Methods in Imaging and Geometric Control, chapter A Hamiltonian approach to sufficiency in optimal control with minimal regularity conditions: Part I. De Gruyter (2016). | MR

[31] H.J. Sussmann, A nonsmooth hybrid maximum principle. Stability and Stabilization of Nonlinear Systems. Edited by D. Aeyels, F. Lamnabhi-Lagarrigue, and A. Van Der Schaft. Springer, London (1999) 325–354. | DOI | MR | Zbl

Cité par Sources :

This work has been supported by “National Group for Mathematical Analysis, Probability and their Applications” (GNAMPA-INdAM), by UTLN−Appel à projet “Chercheurs invités”, Université de Toulon, by Progetto Internazionalizzazione, Università degli Studi di Firenze and by CARTT - IUT de Toulon.