Energy scaling laws for geometrically linear elasticity models for microstructures in shape memory alloys
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 115.

We consider a singularly-perturbed two-well problem in the context of planar geometrically linear elasticity to model a rectangular martensitic nucleus in an austenitic matrix. We derive the scaling regimes for the minimal energy in terms of the problem parameters, which represent the shape of the nucleus, the quotient of the elastic moduli of the two phases, the surface energy constant, and the volume fraction of the two martensitic variants. We identify several different scaling regimes, which are distinguished either by the exponents in the parameters, or by logarithmic corrections, for which we have matching upper and lower bounds.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2020020
Classification : 49J40, 74N15, 74G65
Mots-clés : Microstructure, martensitic phase transformation, energy scaling, vectorial calculus of variations, geometrically linear elasticity
@article{COCV_2020__26_1_A115_0,
     author = {Conti, Sergio and Diermeier, Johannes and Melching, David and Zwicknagl, Barbara},
     title = {Energy scaling laws for geometrically linear elasticity models for microstructures in shape memory alloys},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020020},
     mrnumber = {4185057},
     zbl = {1459.49004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020020/}
}
TY  - JOUR
AU  - Conti, Sergio
AU  - Diermeier, Johannes
AU  - Melching, David
AU  - Zwicknagl, Barbara
TI  - Energy scaling laws for geometrically linear elasticity models for microstructures in shape memory alloys
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020020/
DO  - 10.1051/cocv/2020020
LA  - en
ID  - COCV_2020__26_1_A115_0
ER  - 
%0 Journal Article
%A Conti, Sergio
%A Diermeier, Johannes
%A Melching, David
%A Zwicknagl, Barbara
%T Energy scaling laws for geometrically linear elasticity models for microstructures in shape memory alloys
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020020/
%R 10.1051/cocv/2020020
%G en
%F COCV_2020__26_1_A115_0
Conti, Sergio; Diermeier, Johannes; Melching, David; Zwicknagl, Barbara. Energy scaling laws for geometrically linear elasticity models for microstructures in shape memory alloys. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 115. doi : 10.1051/cocv/2020020. http://www.numdam.org/articles/10.1051/cocv/2020020/

[1] L. Ambrosio, A. Coscia and G. Dal Maso Fine properties of functions with bounded deformation. Arch. Rat. Mech. Anal. 139 (1997) 201–238. | DOI | MR | Zbl

[2] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford University Press, Oxford, (2000). | DOI | MR | Zbl

[3] J.M. Ball, Mathematical models of martensitic microstructure. Mater. Sci. Eng. A 378 (2004) 61–69. | DOI

[4] J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Anal. 100 (1987) 13–52. | DOI | MR | Zbl

[5] J.M. Ball and R.D. James, Proposed experimental tests of a theory of fine microstructure, and the two-well problem. Phil. Trans. R. Soc. London A 338 (1992) 389–450. | DOI | Zbl

[6] P. Bella and M. Goldman, Nucleation barriers at corners for cubic-to-tetragonal phase transformation. Proc. Roy. Soc. Edinburgh A 145 (2015) 715–724. | DOI | MR | Zbl

[7] P. Bella and R.V. Kohn, Wrinkles as the Result of Compressive Stresses in an Annular Thin Film. Comm. Pure Appl. Math. 67 (2014) 693–747. | DOI | MR | Zbl

[8] H. Ben Belgacem, S. Conti, A. De Simone and S. Müller, Energy scaling of compressed elastic films. Arch. Rat. Mech. Anal. 164 (2002) 1–37. | DOI | MR | Zbl

[9] K. Bhattacharya, Self-accomodation in martensite. Arch. Rat. Mech. Anal. 120 (1992) 201–244. | DOI | MR | Zbl

[10] A. Capella and F. Otto, A rigidity result for a perturbation of the geometrically linear three-well problem. Comm. Pure Appl. Math. 62 (2009) 1632–1669. | DOI | MR | Zbl

[11] A. Capella and F. Otto, A quantitative rigidity result for the cubic-to-tetragonal phase transition in the geometrically linear theory with interfacial energy. Proc. Roy. Soc. Edinburgh Sect. A 142 (2012) 273–327. | DOI | MR | Zbl

[12] P. Cesana, F. Della Porta, A. Rüland, C. Zillinger and B. Zwicknagl, Exact constructions in the (non-linear) planar theory of elasticity: from elastic crystals to nematic elastomers. Arch. Rat. Mech. Anal. 237 (2020) 383–445. | DOI | MR | Zbl

[13] A. Chan, Energieskalierung, Gebietsverzweigung und SO(2)-Invarianz in einem fest-fest Phasenübergangsproblem. Ph.D. thesis, Bonn University (2013). Available from: http://hss.ulb.uni-bonn.de/2013/3388/3388.htm.

[14] A. Chan and S. Conti, Energy Scaling and Domain Branching in Solid-Solid Phase Transitions, in Singular Phenomena and Scaling in Mathematical Models, edited by M. Griebel. Springer International Publishing, Cham (2014) 243–260. | DOI | MR

[15] A. Chan and S. Conti, Energy scaling and branched microstructures in a model for shape-memory alloys with SO(2) invariance. Math. Models Methods App. Sci. 25 (2015) 1091–1124. | DOI | MR | Zbl

[16] R. Choksi, Scaling laws in microphase separation of diblock copolymers. J. Nonlinear Sci. 11 (2001) 223–236. | DOI | MR | Zbl

[17] R. Choksi and R.V. Kohn, Bounds on the micromagnetic energy of a uniaxial ferromagnet. Comm. Pure Appl. Math. 51 (1998) 259–289. | DOI | MR | Zbl

[18] R. Choksi, R.V. Kohn and F. Otto, Energy minimization and flux domain structure in the intermediate state of a type-I superconductor. J. Nonlinear Sci. 14 (2004) 119–71. | DOI | MR | Zbl

[19] R. Choksi, R.V. Kohn and F. Otto, Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Comm. Math. Phys. 201 (1998) 61–79. | DOI | MR | Zbl

[20] S. Conti, Branched microstructures: scaling and asymptotic self-similarity. Comm. Pure Appl. Math. 53 (2000) 1448–1474. | DOI | MR | Zbl

[21] S. Conti, A lower bound for a variational model for pattern formation in shape-memory alloys. Cont. Mech. Thermodyn. 17 (2006) 469–476. | DOI | MR | Zbl

[22] S. Conti, J. Diermeier and B. Zwicknagl, Deformation concentration for martensitic microstructures in the limit of low volume fraction. Calc. Var. Partial Differ. Equ. 56 (2017) 16. | DOI | MR | Zbl

[23] S. Conti, M. Goldman, F. Otto and S. Serfaty, A branched transport limit of the Ginzburg-Landau functional. J. l’École Polytech.Math. 5 (2018) 317–75. | DOI | MR | Zbl

[24] S. Conti, M. Klar and B. Zwicknagl, Piecewise affine stress-free martensitic inclusions in planar nonlinear elasticity. Proc. R. Soc. A 473 (2017) 20170235. | DOI | MR | Zbl

[25] S. Conti, F. Otto and S. Serfaty, Branched microstructures in the Ginzburg-Landau model of type-I superconductors. SIAM J. Math. Anal. 48 (2016) 2994–3034. | DOI | MR | Zbl

[26] S. Conti and M. Ortiz, Optimal scaling in solids undergoing ductile fracture by crazing. Arch. Ration. Mech. Anal. 219 (2016) 607–36. | DOI | MR | Zbl

[27] S. Conti and B. Zwicknagl, Low volume-fraction microstructures in martensites and crystal plasticity. Math. Models Methods App. Sci. 26 (2016) 1319–1355. | DOI | MR | Zbl

[28] J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, J. Hattrick-Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang and I. Takeuchi, Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater. 5 (2006) 286–290. | DOI

[29] B. Dacorogna, Direct methods in the calculus of variations, Vol. 78. Springer, Berlin (2007). | MR | Zbl

[30] J. Diermeier, Nichtkonvexe Variationsprobleme und Mikrostrukturen. Bachelor’s thesis, Universität Bonn (2010).

[31] J. Diermeier, Domain branching in linear elasticity. Master’s thesis, Universität Bonn (2013).

[32] J. Diermeier, Analysis of martensitic microstructures in shape-memory-alloys: A low volume-fraction limit. Ph.D. thesis, Bonn University (2016). http://hss.ulb.uni-bonn.de/2016/4499/4499.htm.

[33] G. Dolzmann and S. Müller, Microstructures with finite surface energy: the two-well problem. Arch. Ration. Mech. Anal. 132 (1995) 101–141. | DOI | MR | Zbl

[34] R.D. James, Materials from mathematics. Bull. Am. Math. Soc. 56 (2019) 1–28. | DOI | MR | Zbl

[35] R.D. James and Z. Zhang, A way to search for multiferroic materials with ¨unlikely¨ combinations of physical properties, in The Interplay of Magnetism and Structure in Functional Materials, edited by L. Manosa, A. Planes and A.B. Saxena, Vol. 79. Springer, Berlin (2005).

[36] W. Jin and P. Sternberg, Energy estimates of the von Kármán model of thin-film blistering. J. Math. Phys. 42 (2001) 192–199. | DOI | MR | Zbl

[37] B. Kirchheim, Rigidity and Geometry of Microstructures. MPI-MIS lecture notes (2003).

[38] H. Knüpfer and R.V. Kohn, Minimal energy for elastic inclusions. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 (2011) 695–717. | MR | Zbl

[39] H. Knüpfer, R.V. Kohn and F. Otto, Nucleation Barriers for the Cubic-to-Tetragonal Phase Transformation. Comm. Pure Appl. Math. 66 (2013) 867–904. | DOI | MR | Zbl

[40] H. Knüpfer and C. Muratov, Domain Structure of Bulk Ferromagnetic Crystals in Applied Fields Near Saturation. J. Nonlinear Sci. 21 (2011) 1–42. | DOI | MR | Zbl

[41] H. Knüpfer and F. Otto, Nucleation barriers for the cubic-to-tetragonal phase transformation in the absence of self-accommodation. Z. Angew. Math. Mech. 99 (2019) e201800179. | DOI | MR | Zbl

[42] R.V. Kohn, Energy-driven pattern formation, in International Congress of Mathematicians, ICM 2006, Vol. 1 (2006) 359–383. | MR | Zbl

[43] R.V. Kohn and S. Müller, Branching of twins near an austenite-twinned martensite interface. Phil. Mag. A 66 (1992) 697–715. | DOI

[44] R.V. Kohn and S. Müller, Surface energy and microstructure in coherent phase transitions. Comm. Pure Appl. Math. XLVII (1994) 405–435. | DOI | MR | Zbl

[45] R.V. Kohn and B. Wirth, Optimal fine-scale structures in compliance minimization for a shear load. Comm. Pure Appl. Math. 69 (2016) 1572–1610. | DOI | MR | Zbl

[46] V.A. Kondrat’Ev and O.A. Oleinik, Boundary-value problems for the system of elasticity theory in unbounded domains. Korn’s inequalities. Russ. Math. Surv. 43 (1988) 65–119. | DOI | MR | Zbl

[47] D. Melching, Microstructures in shape memory alloys. Master’s thesis, Universität Bonn (2015).

[48] S. Müller, Variational models for microstructure and phase transitions, in Calculus of variations and geometric evolution problems, edited by F. Bethuel et al. Springer Lecture Notes in Math. 1713. Springer, Berlin (1999) 85–210. | MR | Zbl

[49] A. Rüland, A Rigidity Result for a Reduced Model of a Cubic-to-Orthorhombic Phase Transition in the Geometrically Linear Theory of Elasticity. J. Elast. 123 (2016) 137–177. | DOI | MR | Zbl

[50] A. Rüland, The Cubic-to-Orthorhombic Phase Transition: Rigidity and Non-Rigidity Properties in the Linear Theory of Elasticity. Arch. Ration. Mech. Anal. 221 (2016) 23–106. | DOI | MR | Zbl

[51] T. Simon, Rigidity of branching microstructures in shape memory alloys. Preprint (2017). | arXiv | MR | Zbl

[52] Z. Zhang, R.D. James and S. Müller, Energy barriers and hysteresis in martensitic phase transformations. Acta Mater. 57 (2009) 4332–4352. | DOI

[53] B. Zwicknagl, Microstructures in Low-Hysteresis Shape Memory Alloys: Scaling Regimes and Optimal Needle Shapes. Arch. Ration. Mech. Anal. 213 (2014) 355–421. | DOI | MR | Zbl

Cité par Sources :

This work was mainly done while all authors were at the University of Bonn and was partially supported by the Deutsche Forschungsgemeinschaft via project 211504053 - SFB 1060/A06.