Optimal control of static contact in finite strain elasticity
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 95.

We consider the optimal control of elastic contact problems in the regime of finite deformations. We derive a result on existence of optimal solutions and propose a regularization of the contact constraints by a penalty formulation. Subsequential convergence of sequences of solutions of the regularized problem to original solutions is studied. Based on these results, a numerical path-following scheme is constructed and its performance is tested.

DOI : 10.1051/cocv/2020014
Classification : 49J20, 74B20, 74M15
Mots-clés : Nonlinear elasticity, optimal control, contact problem
@article{COCV_2020__26_1_A95_0,
     author = {Schiela, Anton and Stoecklein, Matthias},
     title = {Optimal control of static contact in finite strain elasticity},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020014},
     mrnumber = {4175376},
     zbl = {1460.49003},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020014/}
}
TY  - JOUR
AU  - Schiela, Anton
AU  - Stoecklein, Matthias
TI  - Optimal control of static contact in finite strain elasticity
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020014/
DO  - 10.1051/cocv/2020014
LA  - en
ID  - COCV_2020__26_1_A95_0
ER  - 
%0 Journal Article
%A Schiela, Anton
%A Stoecklein, Matthias
%T Optimal control of static contact in finite strain elasticity
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020014/
%R 10.1051/cocv/2020014
%G en
%F COCV_2020__26_1_A95_0
Schiela, Anton; Stoecklein, Matthias. Optimal control of static contact in finite strain elasticity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 95. doi : 10.1051/cocv/2020014. http://www.numdam.org/articles/10.1051/cocv/2020014/

[1] R.A. Adams, Pure and Applied Mathematics Sobolev Spaces Adams. Academic Press, Cambridge, Massachusetts, USA (1975).

[2] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63 (1977) 337–403. | DOI | MR | Zbl

[3] J.M. Ball, Some Open Problems in Elasticity, in Geometry, mechanics, and dynamics. Springer, Berlin (2002), 3–59. | MR | Zbl

[4] P. Bastian, M. Blatt, C. Engwer, A. Dedner, R. Klöfkorn, S. Kuttanikkad, M. Ohlberger and O. Sander, The distributed and unified numerics environment (dune), in Proc. of the 19th Symposium on Simulation Technique in Hannover (2006).

[5] T. Betz, Optimal control of two variational inequalities arising in solid mechanics. Ph.D. thesis, TU Dortmund, Germany (2015).

[6] C. Cartis, N. Gould and P.L. Toint, Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results. Math. Prog. 127 (2011) 245–295. | DOI | MR | Zbl

[7] P.G. Ciarlet, Mathematical Elasticity: Three-dimensional elasticity, Number Bd. 1. Elsevier, North-Holland (1994). | Zbl

[8] P.G. Ciarlet and Jindřich Nečas, Unilateral problems in nonlinear, three-dimensional elasticity. Arch. Ration. Mech. Anal. 87 (1985) 319–338. | DOI | MR | Zbl

[9] M. Cocu, Existence of solutions of signorini problems with friction. Int. J. Engi. Sci. 22 (1984) 567–575. | DOI | MR | Zbl

[10] T. Davis and I. Duff, An unsymmetric-pattern multifrontal method for sparse lu factorization. SIAM J. Matrix Anal. Appl. 18 (1997) 140–158. | DOI | MR | Zbl

[11] P. Deuflhard. Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms. Springer Publishing Company, Incorporated, Berlin (2011). | DOI | MR | Zbl

[12] S. Götschel, M. Weiser and A. Schiela. Solving optimal control problems with the kaskade 7 finite element toolbox. In Advances in DUNE. Edited by A. Dedner, B. Flemisch and R. Klöfkorn (2012) 101–112. | DOI

[13] A. Griewank, The modification of newton’s method for unconstrained optimization by bounding cubic terms. Technical Report NA/12, University of Cambridge (1981).

[14] A. Günnel and R. Herzog, Optimal control problems in finite-strain elasticity by inner pressure and fiber tension. Front. Appl. Math. Stat. 2 (2016) 4. | DOI

[15] M. Heinkenschloss and D. Ridzal, A matrix-free trust-region SQP method for equality constrained optimization. SIAM J. Optim. 24 (2014) 1507–1541. | DOI | MR | Zbl

[16] M. Hintermüller, A. Schiela and W. Wollner, The length of the primal-dual path in moreau–yosida-based path-following methods for state constrained optimal control. SIAM J. Optim. 24 (2014) 108–126. | DOI | MR | Zbl

[17] N. Kikuchi and J.T Oden, Contact Problems in Elasticity: a Study of Variational Inequalities and Finite Element Methods, Vol. 8. SIAM, Philadelphia (1988). | DOI | MR | Zbl

[18] L. Lubkoll. An Optimal Control Approach to Implant Shape Design : Modeling, Analysis and Numerics. Ph.D. thesis, University of Bayreuth Bayreuth, Germany (2015).

[19] L. Lubkoll, Fung - invariant-based modeling. Arch. Numer. Softw. 5 (2017) 1.

[20] L. Lubkoll, A. Schiela and M. Weiser, An optimal control problem in polyconvex hyperelasticity. SIAM J. Control Optim. 52 (2014) 1403–1422. | DOI | MR | Zbl

[21] L. Lubkoll, A. Schiela and Martin Weiser, An affine covariant composite step method for optimization with pdes as equality constraints. Optim. Methods Softw. 32 (2017) 1132–1161. | DOI | MR | Zbl

[22] J.A.C. Martins and J.T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlinear Anal. Theor. Methods Appl. 11 (1987) 407–428. | DOI | MR | Zbl

[23] G. Müller and A. Schiela, On the control of time discretized dynamic contact problems. Comput. Optim. Appl. 68 (2017) 243–287. | DOI | MR | Zbl

[24] J. Nečas, Direct Methods in the Theory of Elliptic Equations, Springer Monographs in Mathematics. Springer, Berlin Heidelberg (2012). | DOI | MR | Zbl

[25] J.T. Oden and J.A.C. Martins, Models and computational methods for dynamic friction phenomena. Comput. Methods Appl. Mech. Eng. 52 (1985) 527–634. | DOI | MR | Zbl

[26] E.O. Omojokun, Trust Region Algorithms for Optimization with Nonlinear Equality and Inequality Constraints. Ph.D. thesis, University of Colorado at Boulder, Boulder, CO, USA (1989).

[27] D. Ridzal, Trust-region SQP methods with inexact linear system solves for large-scale optimization. Ph.D. thesis, Rice University, Texas, USA (2006). | MR

[28] M. Schaller, A. Schiela and M. Stöcklein, A composite step method with inexact step computations for pde constrained optimization. Preprint SPP1962-098 (2018).

[29] A. Schiela and M. Stöcklein, Algorithms for optimal control of elastic contact problems with finite strain. University Bayreuth, Germany. Available from: https://eref.uni-bayreuth.de/52240/ (2019).

[30] A. Signorini, Sopra alcune questioni di elastostatica. Atti della Societa Italiana per il Progresso delle Scienze (1933). | JFM

[31] A. Vardi, A trust region algorithm for equality constrained minimization: convergence properties and implementation. SIAM J. Numer. Anal. 22 (1985) 575–591. | DOI | MR | Zbl

[32] J.C. Wehrstedt, Formoptimierung mit Variationsungleichungen als Nebenbedingung und eine Anwendung in der Kieferchirurgie. Ph.D. thesis, TU München, Germany (2007).

[33] M. Weiser, P. Deuflhard and B. Erdmann, Affine conjugate adaptive Newton methods for nonlinear elastomechanics. Opt. Meth. Softw. 22 (2007) 414–431. | MR | Zbl

[34] J.C. Ziems and S. Ulbrich, Adaptive multilevel inexact SQP methods for PDE-constrained optimization. SIAM J. Optim. 21 (2011) 1–40. | DOI | MR | Zbl

Cité par Sources :