Diagonalization-based parallel-in-time algorithms for parabolic PDE-constrained optimization problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 88.

Solving parabolic PDE-constrained optimization problems requires to take into account the discrete time points all-at-once, which means that the computation procedure is often time-consuming. It is thus desirable to design robust and analyzable parallel-in-time (PinT) algorithms to handle this kind of coupled PDE systems with opposite evolution directions. To this end, for two representative model problems which are, respectively, the time-periodic PDEs and the initial-value PDEs, we propose a diagonalization-based approach that can reduce dramatically the computational time. The main idea lies in carefully handling the associated time discretization matrices that are denoted by Bper and Bini for the two problems. For the first problem, we diagonalize Bper directly and this results in a direct PinT algorithm (i.e., non-iterative). For the second problem, the main idea is to design a suitable approximation $$ of Bini, which naturally results in a preconditioner of the discrete KKT system. This preconditioner can be used in a PinT pattern, and for both the Backward-Euler method and the trapezoidal rule the clustering of the eigenvalues and singular values of the preconditioned matrix is justified. Compared to existing preconditioners that are designed by approximating the Schur complement of the discrete KKT system, we show that the new preconditioner leads to much faster convergence for certain Krylov subspace solvers, e.g., the GMRES and BiCGStab methods. Numerical results are presented to illustrate the advantages of the proposed PinT algorithm.

DOI : 10.1051/cocv/2020012
Classification : 65M55, 65M12, 65M15, 65Y05
Mots-clés : Parabolic PDE-constrained optimization, PinT algorithm, diagonalization technique, preconditioner, GMRES, BiCGStab
@article{COCV_2020__26_1_A88_0,
     author = {Wu, Shu-Lin and Zhou, Tao},
     title = {Diagonalization-based parallel-in-time algorithms for parabolic {PDE-constrained} optimization problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020012},
     mrnumber = {4173852},
     zbl = {1460.65116},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020012/}
}
TY  - JOUR
AU  - Wu, Shu-Lin
AU  - Zhou, Tao
TI  - Diagonalization-based parallel-in-time algorithms for parabolic PDE-constrained optimization problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020012/
DO  - 10.1051/cocv/2020012
LA  - en
ID  - COCV_2020__26_1_A88_0
ER  - 
%0 Journal Article
%A Wu, Shu-Lin
%A Zhou, Tao
%T Diagonalization-based parallel-in-time algorithms for parabolic PDE-constrained optimization problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020012/
%R 10.1051/cocv/2020012
%G en
%F COCV_2020__26_1_A88_0
Wu, Shu-Lin; Zhou, Tao. Diagonalization-based parallel-in-time algorithms for parabolic PDE-constrained optimization problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 88. doi : 10.1051/cocv/2020012. http://www.numdam.org/articles/10.1051/cocv/2020012/

[1] D. Abbeloos, M. Diehl, M. Hinze and S. Vandewalle, Nested multigrid methods for time-periodic, parabolic optimal control problems. Comput. Visual Sci. 14 (2011) 27–38. | DOI | MR | Zbl

[2] O. Axelsson, S. Farouq and M. Neytcheva, A preconditioner for optimal control problems, constrained by Stokes equation with a time-harmonic control. J. Comput. Appl. Math. 310 (2017) 5–18. | DOI | MR | Zbl

[3] L. Banjai and D. Peterseim, Parallel multistep methods for linear evolution problems. IMA J. Numer. Anal. 32 (2012) 1217–1240. | DOI | MR | Zbl

[4] L.L. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes and B. Van Bloemen Waanders, Real-time PDE-constrained Optimization. SIAM (2007). | Zbl

[5] A. Borzì and K. Kunisch, A multigrid method for optimal control of time-dependent reaction diffusion processes, Fast Solution of Discretized Optimization Problems. Edited by Hoffmann, R. Hoppe and V. Schulz Vol. 138 of ISNM International Series of Numerical Mathematics. Birkhäuser, Basel (2001). | MR | Zbl

[6] A. Borzì and V. Schulz, m Computational optimization of systems governed by partial differential equations. SIAM, Philadelphia, PA (2012). | MR | Zbl

[7] X. Du, M. Sarkis, C.E. Schaerer and D.B. Szyld, Inexact and truncated Parareal-in-time Krylov subspace methods for parabolic optimal control problems. Electronic Trans. Numer. Anal. 40 (2013) 36–57. | MR | Zbl

[8] M. Erhard and H. Strauch, Control of towing kites for seagoing vessels. IEEE Trans. Control Syst. Technol. 21 (2013) 1629–1640. | DOI

[9] M.J. Gander, L. Halpern, J. Rannou and J. Ryan, A direct time parallel solver by diagonalization for the wave equation. SIAM J. Sci. Comput. 41 (2019) A220–A245. | DOI | MR | Zbl

[10] M.J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29 (2007) 556–578. | DOI | MR | Zbl

[11] M.J. Gander and F. Kwok, Schwarz methods for the time-parallel solution of parabolic control problems. Lect. Notes Comput. Sci. Eng. 104 (2016) 207–216. | DOI | MR | Zbl

[12] S. Gunther, N.R. Gauger and J.B. Schroder, A non-intrusive parallel-in-time approach for simultaneous optimization with unsteady PDEs. Optim. Methods Softw. 34 (2019) 1306–1321. | DOI | MR | Zbl

[13] W. Hackbusch, Fast numerical solution of time-periodic parabolic problems by a multigrid method. SIAM J. Sci. Stat. Comput. 2 (1981) 198–206. | DOI | MR | Zbl

[14] F.M. Hante, M.S. Mommer and A. Potschka, Newton–Picard preconditioners for time-periodic parabolic optimal control problems. SIAM J. Numer. Anal. 53 (2015) 2206–2225. | DOI | MR | Zbl

[15] B. Houska and M. Diehl, Robustness and stability optimization of power generating kite systems in a periodic pumping mode, in Vol. 58 of Proceeding of IEEE International Conference on Control Applications (CCA) (2010) 2172–2177.

[16] B. Houska, F. Logist, J.V. Impe and M. Diehl, Approximate robust optimization of time-periodic stationary states with application to biochemical processes, in Proceedings of the 48th IEEE Conference on Decision and Control. Shanghai, China (2009) 6280–6285.

[17] M. Kolmbauer, Efficient solvers for multiharmonic eddy current optimal control problems with various constraints and their analysis. IMA J. Numer. Anal. 33 (2013) 1063–94. | DOI | MR | Zbl

[18] M. Kolmbauer and U. Langer, A robust preconditioned MinRes solver for distributed time-periodic eddy current optimal control problems. SIAM J. Sci. Comput. 34 (2012) B785–B809. | DOI | MR | Zbl

[19] M. Kollmann and M. Kolmbauer, A preconditioned MinRes solver for time-periodic parabolic optimal control problems. Numer. Linear Algebra Appl. 20 (2014) 761–784. | DOI | MR | Zbl

[20] U. Langer and M. Wolfmayr, Multiharmonic finite element analysis of a time-periodic parabolic optimal control problem. J. Numer. Math. 21 (2013) 265–300. | DOI | MR | Zbl

[21] Z. Liang, O. Axelsson and M. Neytcheva, A robust structured preconditioner for time-harmonic parabolic optimal control problems. Numer. Algor. 79 (2018) 575–596. | DOI | MR | Zbl

[22] J.L. Lions, Y. Maday and G. Turinici, A “parareal” in time discretization of PDE’s. C.R. Acad. Sci. Paris Sér. I Math. 332 (2001) 661–668. | Zbl

[23] J. Liu and Z. Wang, Efficient time domain decomposition algorithms for parabolic PDE-constrained optimization problems. Comput. Math. Appl. 75 (2018) 2115–2133. | DOI | MR | Zbl

[24] Y. Maday and E.M. Rønquist, Parallelization in time through tensor product space-time solvers. C.R. Math. Acad. Sci. Paris 346 (2008) 113–118. | DOI | MR | Zbl

[25] Y. Maday, M.K. Riahi and J. Salomon, Parareal in time intermediate targets methods for optimal control problems, in Control and Optimization with PDE Constraints. Birkhäuser, Basel (2013) 79–92. | MR | Zbl

[26] T.P. Mathew, M. Sarkis, and C.E. Schaerer, Analysis of block parareal preconditioners for parabolic optimal control problems. SIAM J. Sci. Comput. 32 (2010) 1180–1200. | DOI | MR | Zbl

[27] E. Mcdonald, J. Pestana and A. Wathen, Preconditioning and iterative solution of all-at-once systems for evolutionary partial differential equations. SIAM J. Sci. Comput. 40 (2018) A1012—A1033. | DOI | MR | Zbl

[28] P. Nikpoorparizi, N. Deodhar and C. Vermillion, Modeling, control design and combined plant/controller optimization for an energy-harvesting tethered wing. IEEE Trans. Control Syst. Technol. 99 (2017) 1–13.

[29] M.F. Murphy, G.H. Golub and A.J. Wathen, A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21 (2000) 1969–1972. | DOI | MR | Zbl

[30] J.W. Pearson, M. Stoll and A.J. Wathen, Regularization-robust preconditioners for time-dependent PDE-constrained optimization problems. SIAM J. Matrix Anal. Appl. 33 (2012) 1126–1152. | DOI | MR | Zbl

[31] A. Potschka, M.S. Mommer, J.P. Schlöder and H.G. Bock, Newton-picard-based preconditioning for linear-quadratic optimization problems with time-periodic parabolic pde constraints. SIAM J. Sci. Comput. 34 (2010) 1214–1239. | DOI | MR | Zbl

[32] M. Stoll, One-shot solution of a time-dependent time-periodic PDE-constrained optimization problem. IMA J. Numer. Anal. 34 (2014) 1554–1577. | DOI | MR | Zbl

[33] A. Toumi, S. Engell, M. Diehl, H. Bock and J. Schlöder, Efficient optimization of simulated moving bed processes. Chem. Eng. Process. 46 (2007) 1067–1084. | DOI

[34] S.L. Wu, Toward parallel coarse grid correction for the parareal algorithm. SIAM J. Sci. Comput. 40 (2018) A1446–A1472. | MR | Zbl

[35] S.L. Wu, H. Zhang and T. Zhou, Solving time-periodic fractional diffusion equations via diagonalization technique and multi-grid. Numer. Linear Algebra Appl. 25 (2018) e2178. | DOI | MR | Zbl

[36] A.U. Zgraggen, L. Fagiano and M. Morari, Automatic retraction and full-cycle operation for a class of airborne wind energy generators. IEEE Trans. Control Syst. Technol. 24 (2016) 594–608. | DOI

Cité par Sources :