On a quasilinear elliptic problem involving the 1-biharmonic operator and a Strauss type compactness result
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 86.

In this paper we prove the compactness of the embeddings of the space of radially symmetric functions of BL(ℝ$$) into some Lebesgue spaces. In order to do so we prove a regularity result for solutions of the Poisson equation with measure data in ℝ$$, as well as a version of the Radial Lemma of Strauss to the space BL(ℝ$$). An application is presented involving a quasilinear elliptic problem of higher-order, where variational methods are used to find the solutions.

DOI : 10.1051/cocv/2020011
Classification : 35J35, 35J91, 35J92
Mots-clés : Bounded variation functions, 1-biharmonic operator, compactness with symmetry
@article{COCV_2020__26_1_A86_0,
     author = {Hurtado, Elard J. and Pimenta, Marcos T.O. and Miyagaki, Olimpio H.},
     title = {On a quasilinear elliptic problem involving the 1-biharmonic operator and a {Strauss} type compactness result},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020011},
     mrnumber = {4173853},
     zbl = {1460.35169},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020011/}
}
TY  - JOUR
AU  - Hurtado, Elard J.
AU  - Pimenta, Marcos T.O.
AU  - Miyagaki, Olimpio H.
TI  - On a quasilinear elliptic problem involving the 1-biharmonic operator and a Strauss type compactness result
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020011/
DO  - 10.1051/cocv/2020011
LA  - en
ID  - COCV_2020__26_1_A86_0
ER  - 
%0 Journal Article
%A Hurtado, Elard J.
%A Pimenta, Marcos T.O.
%A Miyagaki, Olimpio H.
%T On a quasilinear elliptic problem involving the 1-biharmonic operator and a Strauss type compactness result
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020011/
%R 10.1051/cocv/2020011
%G en
%F COCV_2020__26_1_A86_0
Hurtado, Elard J.; Pimenta, Marcos T.O.; Miyagaki, Olimpio H. On a quasilinear elliptic problem involving the 1-biharmonic operator and a Strauss type compactness result. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 86. doi : 10.1051/cocv/2020011. http://www.numdam.org/articles/10.1051/cocv/2020011/

[1] C.O. Alves and M.T.O. Pimenta, On existence and concentration of solutions to a class of quasilinear problems involving the 1-Laplace operator. Calc. Var. Partial Differ. Equ. 56 (2017) 143. | DOI | MR | Zbl

[2] F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, Minimizing total variation flow. C. R. Acad. Sci., Paria, Sr. I, Math. 331 (2000) 867–872. | DOI | MR | Zbl

[3] F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, Minimizing total variation flow. Differ. Integr. Equ. 14 (2001) 321–360. | MR | Zbl

[4] F. Andreu, C. Ballester, V. Caselles and J.M. Mazón, The Dirichlet problem for the total variation flow. J. Funct. Anal. 180 (2001) 347–403. | DOI | MR | Zbl

[5] F. Andreu, V. Caselles and J.M. Mazón, Parabolic quasilinear equations minimizing linear growth functionals. In Vol. 233 of Progress in Mathematics. Birkhäuser Verlag, Basel. (2004). | MR | Zbl

[6] G. Anzellotti, The Euler equation for functionals with linear growth. Trans. Am. Math. Soc. 290 (1985) 483–501. | DOI | MR | Zbl

[7] H. Attouch, G. Buttazzo and G. Michaille, Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization. MPS-SIAM, Philadelphia (2006). | MR | Zbl

[8] Z. Balogh and A. Kristály, Lions-type compactness and Rubik actions on the Heisenberg group. Calc. Var. Partial Differ. Equ. 48 (2013) 89–109. | DOI | MR | Zbl

[9] S. Barile and M.T.O. Pimenta, Some existence results of bounded variation solutions to 1-biharmonic problems. J. Math. Anal. Appl. 463 (2018) 726–743. | DOI | MR | Zbl

[10] H. Brezis and A. Ponce, Kato’s inequality up to the boundary. Commun. Contemp. Math. 10 (2008) 1217–1241. | DOI | MR | Zbl

[11] D. Cassani, B. Ruf and C. Tarsi, Best constants in a borderline case of second-order Moser type inequalities. Ann. Inst. Henri Poincaré - AN 27 (2010) 73–93. | Numdam | MR | Zbl

[12] K. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981) 102–129. | DOI | MR | Zbl

[13] F. Clarke, Generalized gradients and applications. Trans. Am. Math. Soc. 205 (1975) 247–262. | DOI | MR | Zbl

[14] F. Demengel, Théorèmes d’existence pour des équations avec l’opérateur ”1-laplacien”, première valeur propre pour - Δ 1 . C. R. Math. Acad. Sci. Paris 334 (2002) 1071–1076. | DOI | MR | Zbl

[15] I. Ekeland and R. Teman, Convex analysis and variational problems. North-, Amsterdam (1976). | MR | Zbl

[16] G.M. Figueiredo and M.T.O. Pimenta, Nehari method for locally Lipschitz functionals with examples in problems in the space of bounded variation functions. NoDEA Nonlinear Differ. Equ. Appl. 25 (2018) 47. | DOI | MR | Zbl

[17] G.M. Figueiredo and M.T.O. Pimenta, Existence of bounded variation solution for a 1-Laplacian problem with vanishing potentials. J. Math. Anal. Appl. 459 (2018) 861–878. | DOI | MR | Zbl

[18] G.M. Figueiredo and M.T.O. Pimenta, Strauss’ and Lions’ type results in B V ( N ) with an application to an 1-Laplacian problem. Milan J. Math. 86 (2018) 15–30. | DOI | MR | Zbl

[19] B. Kawohl and F. Schuricht, Dirichlet problems for the 1-Laplace operator, including the eigenvalue problem. Commun. Contemp. Math. 9 (2007) 515–543. | DOI | MR | Zbl

[20] J. Kobayashi and M. Ôtani, The principle of symmetric criticality for non-differentiable mappings. J. Funct. Anal. 214 (2004) 428–449. | DOI | MR | Zbl

[21] J.M. Mazón and S. Segura De León, The Dirichlet problem of a singular elliptic equation arising in the level set formulation of the inverse mean curvature flow. Adv. Calc. Var. 6 (2013) 123–164. | DOI | MR | Zbl

[22] J.M. Mazón, J. Rossi and S. Segura De León, Functions of least gradient and 1-harmonic functions. Indiana Univ. Math. J. 63 (2014) 1067–1084. | DOI | MR | Zbl

[23] A. Mercaldo, J. Rossi, S. Segura De León and C. Trombetti, Anisotropic p q −Laplacian equations when p goes to 1 . Nonlinear Anal. 73 (2010) 3546–3560. | DOI | MR | Zbl

[24] A. Mercaldo, S. Segura De León and C. Trombetti, On the solutions to 1-Laplacian equation with $L^1$ data. J. Funct. Anal. 256 (2009) 2387–2416. | DOI | MR | Zbl

[25] G. Mingione, The Calderón-Zygmund theory for elliptic problems with measure data. Ann. Sci. Norm. Super. Pisa C1 6 (2007) 195–261. | Numdam | MR | Zbl

[26] A. Obereder, S. Osher and O. Scherzer, On the use of dual norms in bounded variation type regularization. Geometr. Prop. Incomplete data Comput. Imag. Vis. 31 (2006) 373–390.

[27] E. Parini, B. Ruf and C. Tarsi, The eigenvalue problem for the 1-biharmonic problem. Ann. Sc. Norm. Super. Pisa C1 13 (2014) 307–322. | MR | Zbl

[28] E. Parini, B. Ruf and C. Tarsi, Limiting Sobolev inequalities and the 1-biharmonic operator. Adv. Nonlinear Anal. 3 (2014) s19–s36. | DOI | MR | Zbl

[29] E. Parini, B. Ruf and C. Tarsi, Higher-order functional inequalities related to the clamped 1-biharmonic operator. Ann. Matemat. 194 (2015) 1835–1858. | MR | Zbl

[30] A. Ponce, Elliptic PDEs, measures and capacities. From the Poisson equations to nonlinear Thomas-Fermi problems. EMS Tracts Math. Zürich 23 (2016). | MR | Zbl

[31] P. Rabinowitz, On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43 (1992) 270–291. | DOI | MR | Zbl

[32] M. Squassina, On Palais’ principle for non-smooth functionals. Nonlinear Anal. 74 (2011) 3786–3804. | DOI | MR | Zbl

[33] W.A. Strauss, Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55 (1977) 149–162. | DOI | MR | Zbl

Cité par Sources :

E.J. Hurtado has been supported by CAPES 001, M.T.O. Pimenta by FAPESP 2019/14330-9 and CNPq 303788/2018-6 and O.H. Miyagaki by CNPq 307061/2018-3 and INCTMAT/CNPq/Brazil.