Null-controllability of perturbed porous medium gas flow
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 85.

In this work, we investigate the null-controllability of a nonlinear degenerate parabolic equation, which is the equation satisfied by a perturbation around the self-similar solution of the porous medium equation in Lagrangian-like coordinates. We prove a local null-controllability result for a regularized version of the nonlinear problem, in which singular terms have been removed from the nonlinearity. We use spectral techniques and the source-term method to deal with the linearized problem and the conclusion follows by virtue of a Banach fixed-point argument. The spectral techniques are also used to prove a null-controllability result for the linearized thin-film equation, a degenerate fourth order analog of the problem under consideration.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2020009
Classification : 93B05, 35K65, 93C20, 35R35
Mots-clés : Null-controllability, degenerate parabolic equation, porous medium equation, thin-film equation
@article{COCV_2020__26_1_A85_0,
     author = {Geshkovski, Borjan},
     title = {Null-controllability of perturbed porous medium gas flow},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020009},
     mrnumber = {4173854},
     zbl = {1460.93015},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020009/}
}
TY  - JOUR
AU  - Geshkovski, Borjan
TI  - Null-controllability of perturbed porous medium gas flow
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020009/
DO  - 10.1051/cocv/2020009
LA  - en
ID  - COCV_2020__26_1_A85_0
ER  - 
%0 Journal Article
%A Geshkovski, Borjan
%T Null-controllability of perturbed porous medium gas flow
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020009/
%R 10.1051/cocv/2020009
%G en
%F COCV_2020__26_1_A85_0
Geshkovski, Borjan. Null-controllability of perturbed porous medium gas flow. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 85. doi : 10.1051/cocv/2020009. http://www.numdam.org/articles/10.1051/cocv/2020009/

[1] F. Alabau-Boussoira, P. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability. J. Evol. Equ. 6 (2006) 161–204. | DOI | MR | Zbl

[2] S.B. Angenent, Large time asymptotics for the porous medium equation, in Nonlinear diffusion equations and their equilibrium states. Springer, New York (1988) 21–34. | DOI | MR | Zbl

[3] K. Beauchard and F. Marbach, Unexpected quadratic behaviors for the small-time local null controllability of scalar-input parabolic equations. J. Math. Pures Appl. 136 (2020) 22–91. | DOI | MR | Zbl

[4] A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and control of infinite dimensional systems. Systems & Control : Foundations & Applications, 2nd edn. Birkhäuser Boston, Inc., Boston (2007). | DOI | MR | Zbl

[5] D. Bonn, J. Eggers, J. Indekeu and J. Meunier, Wetting and spreading. Rev. Mod. Phys. 81 (2009) 739. | DOI

[6] P. Cannarsa, G. Fragnelli and D. Rocchetti, Null controllability of degenerate parabolic operators with drift. Netw. Heterog. Media 2 (2007) 695–715. | DOI | MR | Zbl

[7] P. Cannarsa, G. Fragnelli and D. Rocchetti, Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form. J. Evol. Equ. 8 (2008) 583–616. | DOI | MR | Zbl

[8] P. Cannarsa, P. Martinez and J. Vancostenoble, Persistent regional null controllability for a class of degenerate parabolic equations. Commun. Pure Appl. Anal. 3 (2004) 607–635. | DOI | MR | Zbl

[9] P. Cannarsa, P. Martinez and J. Vancostenoble, Null controllability of degenerate heat equations. Adv. Differ. Equ. 10 (2005) 153–190. | MR | Zbl

[10] P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators. SIAM J. Control. Optim. 47 (2008) 1–19. | DOI | MR | Zbl

[11] P. Cannarsa, P. Martinez and J. Vancostenoble, Global Carleman estimates for degenerate parabolic operators with applications. Vol. 239. American Mathematical Society, Providence, Rhode Island (2016). | MR

[12] S. Chowdhury, D. Maity, M. Ramaswamy and Jean-Pierre Raymond, Local stabilization of the compressible Navier-Stokes system, around null velocity, in one dimension. J. Differ. Equ. 259 (2015) 371–407. | DOI | MR | Zbl

[13] J.-M. Coron, J.I. Diaz, A. Drici and T. Mignazzini, Global null controllability of the 1-dimensional nonlinear slow diffusion equation. Chin. Ann. Math. 34 (2013) 333–344. | DOI | MR | Zbl

[14] J. Denzler and R.J. Mccann, Fast diffusion to self-similarity: complete spectrum, long-time asymptotics and numerology. Arch. Ration. Mech. Anal. 175 (2005) 301–342. | DOI | MR | Zbl

[15] H.O. Fattorini and D.L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Ration. Mech. Anal. 43 (1971) 272–292. | DOI | MR | Zbl

[16] G. Fragnelli, Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete Contin. Dyn. Syst. Ser. S 6 (2013) 687–701. | DOI | MR | Zbl

[17] L. Giacomelli, H. Knüpfer and F. Otto, Smooth zero-contact-angle solutions to a thin-film equation around the steady state. J. Differ. Equ. 6 (2008) 1454–1506. | DOI | MR | Zbl

[18] M.V. Gnann, Well-posedness and self-similar asymptotics for a thin-film equation. Siam J. Math. Anal. 47 (2015) 2868–2902. | DOI | MR | Zbl

[19] M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations. SIAM J. Control. Optim. 52 (2014) 2037–2054. | DOI | MR | Zbl

[20] G.H. Hardy, Note on a theorem of Hilbert. Math. Z. 6 (1920) 314–317. | DOI | JFM | MR

[21] C. Kienzler, Flat fronts and stability for the porous medium equation. Comm. Part. Differ. Equ. 41 (2016) 1793–1838. | DOI | MR | Zbl

[22] H. Koch, Non-Euclidean singular integrals and the porous medium equation, Habilitation. University of Heidelberg. Heidelberg, Germany (1999).

[23] J.J. Kohn and L. Nirenberg, Degenerate elliptic-parabolic equations of second order. Comm. Pure Appl. Math. 20 (1967) 797–872. | DOI | MR | Zbl

[24] K. Le Balc’H Local controllability of reaction-diffusion systems around nonnegative stationary states. ESAIM: COCV 26 (2020) 55. | Numdam | MR | Zbl

[25] J.-L. Lions, Contrôllabilité exacte, perturbations et stabilisation de systèmes distribués, Tome 1 - contrôllabilité exacte. Masson, Dunod, Paris, France (1988). | MR | Zbl

[26] X. Liu, Null controllability of a class of Newtonian filtration equations. J. Math. Anal. Appl. 342 (2008) 1096–1106. | DOI | MR | Zbl

[27] X. Liu and H. Gao, Controllability of a class of Newtonian filtration equations with control and state constraints. SIAM J. Control Optim. 46 (2007) 2256–2279. | DOI | MR | Zbl

[28] Y. Liu, T. Takahashi and M. Tucsnak, Single input controllability of a simplified fluid-structure interaction model. ESAIM: COCV 19 (2013) 20–42. | Numdam | MR | Zbl

[29] R.J. Mccann and C. Seis, The spectrum of a family of fourth-order nonlinear diffusions near the global attractor. Comm. Part. Differ. Equ. 40 (2015) 191–218. | DOI | MR | Zbl

[30] I. Moyano, Flatness for a strongly degenerate 1-D parabolic equation. Math. Control Signals Syst. 28 (2016) 1–22. | DOI | MR | Zbl

[31] M. Muskat, The Flow of Homogeneous Fluids Through Porous Media. McGraw-Hill, New York (1937). | JFM

[32] T.I. Seidman, S.A. Avdonin and S.A. Ivanov, The window problem for series of complex exponentials. J. Fourier Anal. Appl. 6 (2000) 233–254. | DOI | MR | Zbl

[33] C. Seis, Long-time asymptotics for the porous medium equation: The spectrum of the linearized operator. J. Differ. Equ. 256 (2014) 1191–1223. | DOI | MR | Zbl

[34] C. Seis, Invariant manifolds for the porous medium equation. Preprint (2015). | arXiv

[35] C. Seis, The thin-film equation close to self-similarity. Anal. Partial Differ. Equ. 11 (2018) 1303–1342. | MR | Zbl

[36] G. Szegö, Orthogonal Polynomials. Vol. 23. Colloquium Publications, Rhode Island, USA (1939). | MR | Zbl

[37] L.H. Tanner, The spreading of silicone oil drops on horizontal surfaces. J. Phys. D Appl. Phys. 12 (1979) 9. | DOI

[38] G. Tenenbaum and M. Tucsnak, On the null-controllability of diffusion equations. ESAIM: COCV 17 (2013) 1088–1100. | Numdam | MR | Zbl

[39] J.L. Vázquez, The Porous Medium Equation: Mathematical theory. Oxford Publishing Group, Oxford (2007). | MR | Zbl

Cité par Sources :

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No.765579-ConFlex and grant agreement No. 694126-DyCon, grant MTM2017-92996-C2-1-R COSNET of MINECO (Spain), and by the Air Force Office of Scientific Research under Award No. FA9550-18-1-0242.