Oriented distance point of view on random sets
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 84.

Motivated by free boundary problems under uncertainties, we consider the oriented distance function as a way to define the expectation for a random compact or open set. In order to provide a law of large numbers and a central limit theorem for this notion of expectation, we also address the question of the convergence of the level sets of f$$ to the level sets of f when (f$$) is a sequence of functions uniformly converging to f. We provide error estimates in term of Hausdorff convergence. We illustrate our results on a free boundary problem.

DOI : 10.1051/cocv/2020007
Classification : 49Q10, 60D05
Mots-clés : Random sets, continuity of level sets, oriented distance functions, law of large numbers, central limit theorem, free boundary problem
@article{COCV_2020__26_1_A84_0,
     author = {Dambrine, M. and Puig, B.},
     title = {Oriented distance point of view on random sets},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020007},
     mrnumber = {4167084},
     zbl = {1459.60020},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020007/}
}
TY  - JOUR
AU  - Dambrine, M.
AU  - Puig, B.
TI  - Oriented distance point of view on random sets
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020007/
DO  - 10.1051/cocv/2020007
LA  - en
ID  - COCV_2020__26_1_A84_0
ER  - 
%0 Journal Article
%A Dambrine, M.
%A Puig, B.
%T Oriented distance point of view on random sets
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020007/
%R 10.1051/cocv/2020007
%G en
%F COCV_2020__26_1_A84_0
Dambrine, M.; Puig, B. Oriented distance point of view on random sets. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 84. doi : 10.1051/cocv/2020007. http://www.numdam.org/articles/10.1051/cocv/2020007/

[1] G. Allaire, E. Cancès and J.-L. Vié, Second-order shape derivatives along normal trajectories, governed by Hamilton-Jacobi equations. Struct. Multidiscip. Optim. 54 (2016) 1245–1266. | DOI | MR

[2] G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363–393. | DOI | MR | Zbl

[3] H.W. Alt and L.A. Caffarelli, Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325 (1981) 105–144. | MR | Zbl

[4] A. Araujo and E. Giné, The central limit theorem for real and Banach valued random variables. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York-Chichester-Brisbane (1980). | MR | Zbl

[5] A. Beurling, On free boundary problems for the laplace equation. Sem. on Analytic Functions. Inst. for Advanced Study Princeton (1957) 248–263. | Zbl

[6] P. Billingsley, Convergence of probability Measures. Wiley, New York (1968). | MR | Zbl

[7] J. Bolte, A. Daniilidis, O. Ley and L. Mazet, Characterizations of Łojasiewicz inequalities: Subgradient flows, Talweg, convexity. Trans. Am. Math. Soc. 362 (2009) 12. | DOI | MR | Zbl

[8] P. Cardaliaguet and O. Ley, Some flows in shape optimization. Arch. Ration. Mech. Anal. 183 (2007) 21–58. | DOI | MR | Zbl

[9] P. Cardaliaguet and O. Ley, On the energy of a flow arising in shape optimization. Interfaces Free Bound. 10 (2008) 223–243. | DOI | MR | Zbl

[10] G. Da Prato and J. Zabczyk, Ergodicity for infinite-dimensional systems. In Vol. 229 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1996). | MR | Zbl

[11] M. Dambrine, H. Harbrecht, M.D. Peters and B. Puig, On Bernoulli’s free boundary problem with a random boundary. Int. J. Uncertain. Quantif . 7 (2017) 335–353. | DOI | MR | Zbl

[12] M.C. Delfour and J.-P. Zolésio, Shapes and geometries. Metrics, analysis, differential calculus, and optimization. In Vol. 22 of Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition 2011. | MR | Zbl

[13] M. Flucher and M. Rumpf, Bernoulli’s free-boundary problem, qualitative theory and numerical approximation. J. Reine Angew. Math. 486 (1997) 165–204. | MR | Zbl

[14] M. Hayouni, A. Henrot and N. Samouh, On the Bernoulli free boundary problem and related shape optimization problems. Interfaces Free Bound. 3 (2001) 1–13. | DOI | MR | Zbl

[15] A. Henrot and M. Pierre, Shape variation and optimization, A geometrical analysis, English version of the French publication [MR2512810] with additions and updates. In Vol. 28 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich (2018). | MR | Zbl

[16] A. Henrot and H. Shahgholian, Convexity of free boundaries with Bernoulli type boundary condition. Nonlinear Anal. 28 (1997) 815–823. | DOI | MR | Zbl

[17] H. Jankowski and L. Stanberry, Expectations of random sets and their boundaries using oriented distance functions. J. Math. Imaging Vision 36 (2010) 291–303. | DOI | MR | Zbl

[18] H. Jankowski and L. Stanberry, Confidence regions for means of random sets using oriented distance functions. Scand. J. Stat. 39 (2012) 340–357. | DOI | MR | Zbl

[19] D.G. Kendall, Foundations of a theory of random sets. Wiley, London (1974) 322–376. | MR | Zbl

[20] H. Kunita, Stochastic flows and stochastic differential equations. In Vol. 24 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1990). | MR | Zbl

[21] G. Matheron, Ensembles fermés aléatoires, ensembles semi-Markoviens et polyèdres poissoniens. Adv. Appl. Probab. 4 (1972) 508–541. | DOI | MR | Zbl

[22] G. Matheron, Random sets and integral geometry. With a foreword by Geoffrey S. Watson, Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York-London-Sydney (1975). | MR | Zbl

[23] S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988) 12–49. | DOI | MR | Zbl

[24] D. Tepper, Free boundary problem. SIAM J. Math. Anal. 5 (1974) 841–846. | DOI | MR | Zbl

[25] D. Tepper, On a free boundary problem, the Starlike case. SIAM J. Math. Anal. 6 (1975) 503–505. | DOI | MR | Zbl

Cité par Sources :