Principal eigenvalues of fully nonlinear integro-differential elliptic equations with a drift term
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 36.

We study existence of principal eigenvalues of a fully nonlinear integro-differential elliptic equations with a drift term via the Krein–Rutman theorem and regularity estimates up to boundary of viscosity solutions. We also show simplicity of eigenfunctions in the viscosity sense by using a nonlocal version of the ABP estimate and a “sweeping lemma”.

DOI : 10.1051/cocv/2020003
Classification : 35J60, 47G20, 35P30
Mots-clés : Principal eigenvalue, integro-differential equation, regularity, Krein–Rutman theorem
@article{COCV_2020__26_1_A36_0,
     author = {Quaas, Alexander and Salort, Ariel and Xia, Aliang},
     title = {Principal eigenvalues of fully nonlinear integro-differential elliptic equations with a drift term},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020003},
     mrnumber = {4116681},
     zbl = {1448.35199},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020003/}
}
TY  - JOUR
AU  - Quaas, Alexander
AU  - Salort, Ariel
AU  - Xia, Aliang
TI  - Principal eigenvalues of fully nonlinear integro-differential elliptic equations with a drift term
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020003/
DO  - 10.1051/cocv/2020003
LA  - en
ID  - COCV_2020__26_1_A36_0
ER  - 
%0 Journal Article
%A Quaas, Alexander
%A Salort, Ariel
%A Xia, Aliang
%T Principal eigenvalues of fully nonlinear integro-differential elliptic equations with a drift term
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020003/
%R 10.1051/cocv/2020003
%G en
%F COCV_2020__26_1_A36_0
Quaas, Alexander; Salort, Ariel; Xia, Aliang. Principal eigenvalues of fully nonlinear integro-differential elliptic equations with a drift term. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 36. doi : 10.1051/cocv/2020003. http://www.numdam.org/articles/10.1051/cocv/2020003/

[1] A. Arapostathis, A counterexample to a nonlinear version of the Krein–Rutman theorem by R. Mahadevan. Nonlinear Anal. 171 (2018) 170–176. | DOI | MR | Zbl

[2] S. Armstrong, Principal eigenvalues and an anti-maximum principle for homogeneous fully nonlinear elliptic equations. J. Differ. Equ. 246 (2009) 2958–2987. | DOI | MR | Zbl

[3] S. Armstrong, The Dirichlet problem for the Bellman equation at resonance. J. Differ. Equ. 247 (2009) 931-955. | DOI | MR | Zbl

[4] G. Barles, E. Chasseigne and C. Imbert, On the dirichlet problem for second-order elliptic integro-differential equations. Indiana Univ. Math. J. 57 (2008) 213–246. | DOI | MR | Zbl

[5] B. Barrios, L. Del Pezzo, J. García-Melián and A. Quaas, A priori bounds and existence of solutions for some nonlocal elliptic problems. Rev. Math. Iberoam. 34 (2018) 195–220. | DOI | MR | Zbl

[6] H. Berestycki, On some nonlinear Sturm-Liouville problems. J. Differ. Equ. 26 (1977) 375–390. | DOI | MR | Zbl

[7] H. Berestycki, L. Nirenberg and S. Varadhan, The principal eigenvalue and maximum principle for second order elliptic operators in general domains. Commun. Pure Appl. Math. 47 (1994) 47–92. | DOI | MR | Zbl

[8] I. Birindelli and F. Demengel, First eigenvalue and maximum principle for fully nonlinear singular operators. Adv. Differ. Equ. 11 (2006) 91–119. | MR | Zbl

[9] I. Birindelli and F. Demengel, Eigenvalue, maximum principle and regularity for fully nonlinear homogeneous operators. Commun. Pure Appl. Anal. 6 (2007) 335–366. | DOI | MR | Zbl

[10] K. Bogdan and T. Komorowski, Principal eigenvalue of the fractional Laplacian with a large incompressible drift. Nonlinear Differ. Equ. Appl. 21 (2014) 541–566. | DOI | MR | Zbl

[11] J. Busca, M. Esteban and A. Quaas, Nonlinear eigenvalues and bifurcation problems for Pucci’s operator. Ann. Inst. Henri Poincaré Anal. Non Linéaire 22 (2005) 187–206. | DOI | Numdam | MR | Zbl

[12] X.Cabré, On the Alexandroff-Bakel’man-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations. Commun. Pure Appl. Math. 48 (1995) 539–570. | DOI | MR | Zbl

[13] X. Cabré, Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations. Discrete Continuous Dyn. Syst. 8 (2002) 331–359. | DOI | MR | Zbl

[14] X. Cabré and L. Caffarelli, Fully nonlinear elliptic equations, American Mathematical Society Colloquium Publications, Rhode Island, USA (1995) 43. | MR | Zbl

[15] L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation. Arch. Ration. Mech. Anal 200 (2011) 59–88. | DOI | MR | Zbl

[16] L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62 (2009) 597–638. | DOI | MR | Zbl

[17] H.A. Chang-Lara and G. Dávila, Hölder estimates for non-local parabolic equations with critical drift. J. Differ. Equ. 260 (2016) 4237–4284. | DOI | MR | Zbl

[18] H.A. Chang-Lara and D. Kriventsov, Further Time Regularity for Nonlocal, Fully Nonlinear Parabolic Equations. Commun. Pure Appl. Math. 70 (2017) 950–977. | DOI | MR | Zbl

[19] H.A. Chang-Lara, Regularity for fully non linear equations with non local drift. Preprint (2012). | arXiv

[20] H. Chen, P. Felmer and A. Quaas, Large solutions to elliptic equations involving fractional Laplacian. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 32, (2015) 1199–1228. | DOI | Numdam | MR | Zbl

[21] G. Dávila, A. Quaas and E. Topp, Existence, nonexistence and multiplicity results for nonlocal Dirichlet problems. J. Differ. Equ. 266 (2019) 5971–5997. | DOI | MR | Zbl

[22] P. Felmer and A. Quaas, Boundary blow up solutions for fractional elliptic equations. Asymptotic Anal. 78 (2012) 123–144. | DOI | MR | Zbl

[23] P. Felmer and A. Quaas, Positive solutions to ”semilinear” equation involving the Pucci’s operator. J. Differ. Equ. 199 (2004) 376–393. | DOI | MR | Zbl

[24] P. Felmer, A. Quaas and B. Sirakov, Resonance phenomena for second-order stochastic control equations. SIAM J. Math. Anal. 42 (2010) 997–1024. | DOI | MR | Zbl

[25] P. Felmer, A. Quaas and B. Sirakov, Landesman-Lazer type results for second order Hamilton-Jacobi-Bellman equations. J. Funct. Anal. 258 (2010) 4154–4182. | DOI | MR | Zbl

[26] D. Gilbarg and S. Trudinger (Eds.), Elliptic Partial Differential Equations of Second Order reprint of the 1998 edition, Classics in Mathematics. Springer-Verlag, Berlin (2001). | MR | Zbl

[27] A. Iannizzotto, S. Mosconi and M. Squassina, A note on global regularity for the weak solutions of fractional p-Laplacian equations. Rend. Lincei Mat. Appl. 27 (2016) 15–24. | MR | Zbl

[28] H. Ishii and Y. Yoshimura, Demi-eigenvalues for uniformly elliptic Isaacs operators. Preprint (2020).

[29] M.G. Krein and M.A. Rutman, Linear operators leaving invariant a cone in a Banach space. Amer. Math. Soc. 10 (1962) 199–325. | MR

[30] M. Kassmann, M. Rang and R. Schwab, Integro-differential equations with nonlinear directional dependence. Indiana Univ. Math. J. 63 (2014) 1467–1498. | DOI | MR | Zbl

[31] P.-L. Lions, Bifurcation and optimal stochastic control, Nonlinear Anal. 7 (1983) 177–207. | DOI | MR

[32] R. Mahadevan, A note on a non-linear Krein–Rutman theorem. Nonlinear Anal. 67 (2007) 3084–3090. | DOI | MR | Zbl

[33] C. Mou, Perron’s method for nonlocal fully nonlinear equations. Anal. Partial Differ. Equ. 10 (2017) 1227–1254. | MR | Zbl

[34] B. Oksendal and A. Sulem, Applied stochastic control of jump diffusions. Springer-Verlag, Berlin (2010). | MR | Zbl

[35] C. Pucci, Maximum and minimum first eigenvalues for a class of elliptic operators, Proc. Amer. Math. Soc. 17 (1966) 788–795. | DOI | MR | Zbl

[36] A. Quaas and B. Sirakov, Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators. Adv. Math. 218 (2008) 105–135. | DOI | MR | Zbl

[37] A. Quaas and B. Sirakov, On the principle eigenvalues and the Dirichlet problem for fully nonlinear operators. C. R. Acad. Sci. Paris 342 (2006) 115–118. | DOI | MR | Zbl

[38] P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7 (1971) 487–513. | DOI | MR | Zbl

[39] X. Ros-Oton and J. Serra, Boundary regularity for fully nonlinear integro-differential equations. Duke Math. J. 165 (2016) 2079–2154. | DOI | MR | Zbl

[40] R. Schwab and L. Silvestre, Regularity for parabolic integro-differential equations with very irregular kernels. Anal. Partial Differ. Equ. 9 (2016) 727–772. | MR | Zbl

[41] L. Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional laplace. Indiana Univ. Math. J. 55 (2006) 1155–1174. | DOI | MR | Zbl

[42] B. Sirakov, Non-uniqueness for the Dirichlet problem for fully nonlinear elliptic operators and the Ambrosetti-Prodi phenomenon, Analysis and topology in nonlinear differential equations, Progr. Nonlinear Differ. Equ. Appl. 85 (2014) 405–421. | MR | Zbl

[43] H.M. Soner, Optimal control with state-space constraint. II. SIAM J. Control Optim. 24 (1986) 1110–1122. | DOI | MR | Zbl

Cité par Sources :