Two-scale homogenization of a stationary mean-field game
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 17.

In this paper, we characterize the asymptotic behavior of a first-order stationary mean-field game (MFG) with a logarithm coupling, a quadratic Hamiltonian, and a periodically oscillating potential. This study falls into the realm of the homogenization theory, and our main tool is the two-scale convergence. Using this convergence, we rigorously derive the two-scale homogenized and the homogenized MFG problems, which encode the so-called macroscopic or effective behavior of the original oscillating MFG. Moreover, we prove existence and uniqueness of the solution to these limit problems.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2020002
Classification : 91A13, 35F21, 35B27
Mots-clés : Mean-field game, homogenization, two-scale convergence
@article{COCV_2020__26_1_A17_0,
     author = {Ferreira, Rita and Gomes, Diogo and Yang, Xianjin},
     title = {Two-scale homogenization of a stationary mean-field game},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020002},
     mrnumber = {4064478},
     zbl = {1437.91054},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2020002/}
}
TY  - JOUR
AU  - Ferreira, Rita
AU  - Gomes, Diogo
AU  - Yang, Xianjin
TI  - Two-scale homogenization of a stationary mean-field game
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2020002/
DO  - 10.1051/cocv/2020002
LA  - en
ID  - COCV_2020__26_1_A17_0
ER  - 
%0 Journal Article
%A Ferreira, Rita
%A Gomes, Diogo
%A Yang, Xianjin
%T Two-scale homogenization of a stationary mean-field game
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2020002/
%R 10.1051/cocv/2020002
%G en
%F COCV_2020__26_1_A17_0
Ferreira, Rita; Gomes, Diogo; Yang, Xianjin. Two-scale homogenization of a stationary mean-field game. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 17. doi : 10.1051/cocv/2020002. http://www.numdam.org/articles/10.1051/cocv/2020002/

[1] G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. | DOI | MR | Zbl

[2] M. Bardi and E. Feleqi, Nonlinear elliptic systems and mean-field games. NoDEA Nonlinear Differ. Equ. Appl. 23 (2016) Art. 44, 32. | DOI | MR | Zbl

[3] L. Bufford and I. Fonseca, A note on two scale compactness for p = 1. Port. Math. 72 (2015) 101–117. | DOI | MR | Zbl

[4] S. Cacace, F. Camilli, A. Cesaroni and C. Marchi, An ergodic problem for mean field games: qualitative properties and numerical simulations. Preprint (2018). | arXiv | MR | Zbl

[5] L. Carbone and R.D. Arcangelis, Unbounded functionals in the calculus of variations. Vol. 125 of Monographs and Surveys in Pure and Applied Mathematics. Chapman & Hall/CRC, Boca Raton, FL (2002). Representation, relaxation, and homogenization. | MR | Zbl

[6] P. Cardaliaguet, J.-M. Lasry, P.-L. Lions and A. Porretta, Long time average of mean field games. Netw. Heterog. Media 7 (2012) 279–301. | DOI | MR | Zbl

[7] P. Cardaliaguet, J.-M. Lasry, P.-L. Lions and A. Porretta, Long time average of mean field games with a nonlocal coupling. SIAM J. Control Optim. 51 (2013) 3558–3591. | DOI | MR | Zbl

[8] A. Cesaroni, N. Dirr and C. Marchi, Homogenization of a mean field game system in the small noise limit. SIAM J. Math. Anal. 48 (2016) 2701–2729. | DOI | MR | Zbl

[9] D. Cioranescu and P. Donato, An introduction to homogenization. Vol. 17 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, New York (1999). | MR | Zbl

[10] L.C. Evans, Some new PDE methods for weak KAM theory. Calc. Var. Part. Differ. Equ. 17 (2003) 159–177. | DOI | MR | Zbl

[11] I. Fonseca and G. Leoni, Modern methods in the calculus of variations: Lp spaces. Springer Monographs in Mathematics. Springer, New York (2007). | MR | Zbl

[12] M. Giaquinta and L. Martinazzi, An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs. Springer Science & Business Media (2013). | MR | Zbl

[13] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin (2001). Reprint of the 1998 edition. | MR | Zbl

[14] D. Gomes, E. Pimentel and V. Voskanyan, Regularity theory for mean-field game systems. Springer Briefs in Mathematics. Springer, Cham (2016). | DOI | MR | Zbl

[15] D. Gomes, L. Nurbekyan and M. Prazeres, One-dimensional stationary mean-field games with local coupling. Dyn. Games Appl. (2017). | MR | Zbl

[16] M. Huang, R.P. Malhamé and P.E. Caines, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 (2006) 221–251. | DOI | MR | Zbl

[17] M. Huang, P.E. Caines and R.P. Malhamé, Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized ϵ-Nash equilibria. IEEE Trans. Automat. Control 52 (2007) 1560–1571. | DOI | MR | Zbl

[18] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343 (2006) 619–625. | DOI | MR | Zbl

[19] J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343 (2006) 679–684. | DOI | MR | Zbl

[20] J.-M. Lasry and P.-L. Lions, Mean field games. Cahiers de la Chaire Finance et Développement Durable (2007). | Zbl

[21] P.L. Lions, G. Papanicolao and S.R.S. Varadhan, Homogeneization of Hamilton-Jacobi equations. Preliminary Version (1988)..

[22] D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002) 35–86. | MR | Zbl

[23] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–623. | DOI | MR | Zbl

[24] A. Visintin, Towards a two-scale calculus. ESAIM: COCV 12 (2006) 371–397. | Numdam | MR | Zbl

[25] A. Visintin, Two-scale convergence of some integral functionals. Calc. Var. Partial Differ. Equ. 29 (2007) 239–265. | DOI | MR | Zbl

[26] V. Zhikov, On two-scale convergence. J. Math. Sci. 120 (2004) 1328–1352. | DOI | MR | Zbl

Cité par Sources :

The authors were supported by King Abdullah University of Science and Technology (KAUST) baseline funds and KAUST OSR-CRG2017-3452.