Chance constrained optimization of elliptic PDE systems with a smoothing convex approximation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 70.

In this paper, we consider chance constrained optimization of elliptic partial differential equation (CCPDE) systems with random parameters and constrained state variables. We demonstrate that, under standard assumptions, CCPDE is a convex optimization problem. Since chance constrained optimization problems are generally nonsmooth and difficult to solve directly, we propose a smoothing inner-outer approximation method to generate a sequence of smooth approximate problems for the CCPDE. Thus, the optimal solution of the convex CCPDE is approximable through optimal solutions of the inner-outer approximation problems. A numerical example demonstrates the viability of the proposed approach.

DOI : 10.1051/cocv/2019077
Classification : 46E35, 46B09, 49K30, 90C15, 90C25, 90C30
Mots-clés : Chance constraints, stochastic optimization, elliptic PDEs systems, random parameters, smoothing, inner-outer approximation
@article{COCV_2020__26_1_A70_0,
     author = {Geletu, Abebe and Hoffmann, Armin and Schmidt, Patrick and Li, Pu},
     title = {Chance constrained optimization of elliptic {PDE} systems with a smoothing convex approximation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019077},
     mrnumber = {4155223},
     zbl = {1451.90105},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019077/}
}
TY  - JOUR
AU  - Geletu, Abebe
AU  - Hoffmann, Armin
AU  - Schmidt, Patrick
AU  - Li, Pu
TI  - Chance constrained optimization of elliptic PDE systems with a smoothing convex approximation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019077/
DO  - 10.1051/cocv/2019077
LA  - en
ID  - COCV_2020__26_1_A70_0
ER  - 
%0 Journal Article
%A Geletu, Abebe
%A Hoffmann, Armin
%A Schmidt, Patrick
%A Li, Pu
%T Chance constrained optimization of elliptic PDE systems with a smoothing convex approximation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019077/
%R 10.1051/cocv/2019077
%G en
%F COCV_2020__26_1_A70_0
Geletu, Abebe; Hoffmann, Armin; Schmidt, Patrick; Li, Pu. Chance constrained optimization of elliptic PDE systems with a smoothing convex approximation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 70. doi : 10.1051/cocv/2019077. http://www.numdam.org/articles/10.1051/cocv/2019077/

[1] R.A. Adams and J.J.F. Fournier, Sobolev Spaces, 2nd ed. Academic Press (Elsevier) (2003). | MR | Zbl

[2] A. Alexanderian, N. Petra, G. Stadler and O. Ghattas, Mean-variance risk-averse optimal control of systems governed by PDEs with random parameter fileds using quadratic approximations. SIAM/ASA J. Uncert. Quantif. 5 (2017) 1166–1192. | DOI | MR | Zbl

[3] H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis and Sobolev and BV Spaces Applications to PDEs and Optimization. SIAM, Philadelphia (2014). | MR | Zbl

[4] P. Atwal, S. Conti, B. Geihe, M. Pach, M. Rumpf and R. Schultz, On shape optimization with stochastic loadings. In Constrained Optimization and Optimal Control for Partial Differential Equations, edited by G. Leugering et al. International Series of Numerical Mathematics, Volume 160, Springer Basel AG (2012) 215–243. | DOI | MR | Zbl

[5] I. Babuska and P. Chatzipantelidis, On solving elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 191 (2002) 4093–4122. | DOI | MR | Zbl

[6] I. Babuska, F. Nobile and R. Tempone, A Stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev. 52 (2010) 317–355. | DOI | MR | Zbl

[7] I. Babuska, R. Tempone and G.E. Zourakis, Solving elliptic boundary value problems with uncertain coefficients by the finite element method – the stochastic formulation. Comput. Methods Appl. Mech. Eng. 194 (2010) 1251–1294. | DOI | MR | Zbl

[8] I. Babuska, R. Tempone and G.E. Zourakis, Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 24 (2004) 800–825. | DOI | MR | Zbl

[9] H. Bauer, Maß-und Integrations theorie. De Gruyter, Berlin (1999). | MR

[10] J. Beck, F.L. Nobile Tamellini and R. Tempone, Convergence of quasi-optimal stochastic Galerkin methods for a class of PDES with random coefficients. Comput. Math. Appl. 67 (2014) 732–751. | DOI | MR | Zbl

[11] J.M. Borwein and A.S. Lewis, Strong rotundity and optimization. SIAM J. Optim. 4 (1994) 146–158. | DOI | MR | Zbl

[12] J.M. Borwein and J.D. Vanderwerff, Convex Functions: constructions, characterizations and counterexamples. Cambridge University Press, Cambridge, UK (2010). | MR | Zbl

[13] A. Borzi, Multigrid sparse-grid schemes for elliptic control problem with random coefficients. Comput. Vis. Sci. 13 (2010) 153–160. | DOI | MR | Zbl

[14] A. Borzi, V. Schulz, C. Schillings, G. Von Winckel, On the treatment of distributed uncertainties in PDE-constrained optimization. GAMM-Mitteilungen 33 (2010) 230–246. | DOI | MR | Zbl

[15] A. Borzi and G. Von Winckel, Multigrid methods and sparse-grid collocation techniques for parabolic optimal control problems with random coefficients. SIAM J. Sci. Comput. 31 (2009) 2172–2192. | DOI | MR | Zbl

[16] A. Borzi and G. Von Winckel, A POD framework to determine robust controls in PDE optimization. Comput. Vis. Sci. 14 (2011) 91–103. | DOI | MR | Zbl

[17] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. Springer, New York, USA (2011). | DOI | MR | Zbl

[18] J. Charrier, Strong and weak error estimates for elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50 (2012) 216–246. | DOI | MR | Zbl

[19] P. Chen and A. Quarteroni, Weighted reduced basis method for stochastic optimal control problems with elliptic PDE constraint. SIAM/ASA J. Uncert. Quant. 2 (2014) 364–396. | DOI | MR | Zbl

[20] P.G. Ciarlet, The finite element method for elliptic problems. SIAM, Philadelphia, PA, USA (2002). | DOI | MR | Zbl

[21] F.E. Curtis, A. Wächter and V.M. Zavala, A sequential algorithm for solving nonlinear optimization problems with chance constraints. SIAM J. Optim. 28 (2018) 930–958. | DOI | MR | Zbl

[22] J. Dieudonné, Éleménts d’Analyse, Tom II, Chapitres XII à XV, 2nd ed. Editeur revue et augmentée Gauthier-Villars, Paris, Bruxelles, Montréal (1974). | MR

[23] M.H. Farshbaf-Shaker, R. Henrion and D. Hömberg, Properties of chance constraints in infinite dimensions with an application to PDE constrained optimization. Set-Valued Var. Anal. 26 (2018) 821–841. | DOI | MR | Zbl

[24] P. Frauenfelder, C. Schwab and R.A. Todor, Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Eng. 194 (2005) 205–228. | DOI | MR | Zbl

[25] A. Geletu, A. Hoffmann and P. Li, Analytic approximation and differentiability of joint chance constraints. Optimization 68 (2019) 1985–2023. | DOI | MR | Zbl

[26] A. Geletu, M. Klöppel, A. Hoffmann and P. Li, An inner-outer approximation approach to chance constrained optimization. SIAM J. Optim. 27 (2017) 1834–1857. | DOI | MR | Zbl

[27] A. Geletu, M. Klöppel, A. Hoffmann and P. Li, A tractable approximation of non-convex chance constrained optimization with non-Gaussian uncertainties. Eng. Optim. 47 (2015) 495–520. | DOI | MR

[28] A. Geletu, P. Schmidt and P. Li, Stochastische Optimierung parabolischer PDE-Systeme unter Wahrscheinlichkeitsrestriktionen am Beispiel der Temperaturregelung eines Stabes. at - Automatisierungstechnik 66 (2018) 975–985. | DOI

[29] C. Grossmann, H.-G. Roos and M. Stynes, Numerical treatment of partial differential equations. Springer Verlag, Berlin, Heidelberg, New York (2007). | DOI | MR | Zbl

[30] E. Hille and R.S. Phillips, Functional analysis and semi-groups. 3rd printing of rev. ed.of 1957. American Mathematical Society, Providence, RI (1974). | MR

[31] L.J. Hong, Y. Yang and L. Zhang, Sequential convex approximations to joint chance constrained programs: A Monte Carlo approach. Oper. Res. 59 (2011) 617–630. | DOI | MR | Zbl

[32] L.S. Hou, J. Lee and H. Manouzi, Finite element approximations of stochastic optimal control problems constrained by stochastic elliptic PDEs. J. Math. Anal. Appl. 384 (2011) 87–103. | DOI | MR | Zbl

[33] H.Th. Jongen and G.W. Weber, Nonlinear optimization: characterization of structural stability. J. Glob. Optim. 1 (1991) 47–64. | DOI | MR | Zbl

[34] H.Th. Jongen, F. Twilt and G.W. Weber, Semi-infinite optimization: structure and stability of the feasible set. JOTA 72 (1992) 529–552. | DOI | MR | Zbl

[35] B.S. Jovanović and E. Süli, Analysis of finite difference scheme for linear partial differential equations with generalized solutions. Springer-Verlag, London (2014). | MR

[36] J.F.C. Kingman, A convexity property of positive matrices. Quart. J. Math. 12 (1961) 283–284. | DOI | MR | Zbl

[37] M. Klöppel, Efficient numerical solution of chance constrained optimization problems with engineering applications. Dissertation TU Ilmenau (2014).

[38] D.P. Kouri, A multilevel stochastic collocation algorithm for optimization of PDEs with uncertain coefficients. SIAM/ASA J. Uncertain. Quantif . 2 (2014) 55–81. | DOI | MR | Zbl

[39] D.P. Kouri, M. Heinkenschloss, D. Ridzal and V.G. Van Bloemen Waanders, Inexact objective function evaluations in a trust-region algorithm for PDE-constrained optimization under uncertainty. SIAM J. Sci. Comput. 36 (2014) A3011–A3029. | DOI | MR | Zbl

[40] D.P. Kouri and T.M. Surowiec, Risk-Averse PDE-Constrained Optimization using the Conditional Value-at-Risk. SIAM J. Optim. 26 (2016) 365–396. | DOI | MR | Zbl

[41] D.P. Kouri and T.M. Surowiec, Existence and optimality conditions for risk-averse PDE-constrained optimization. SIAM / ASA J. Uncert. Quantif . 6 (2018) 787–815. | DOI | MR | Zbl

[42] F.Y. Kuo, Ch. Schwab and I.H. Sloan, Quasi-Monte Carlo finite element methods for a class of ellipitc partial differential equations with random coefficients. SIAM J. Numer. Anal. 50 (2012) 3351–3374. | DOI | MR | Zbl

[43] H.-C. Lee and J. Lee, A stochastic collocation method for stochastic control problems. Commun. Comput. Phys. 14 (2013) 77–106. | MR

[44] G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich and S. Ulbrich, Constrained Optimization and Optimal Control for Partial Differential Equations. In Vol. 160 of International Series of Applied Mathematics. Springer (2012). | MR | Zbl

[45] G.J. Lord, C.E. Powell and T. Shardlow, An introduction to computational stochastic PDEs. Cambridge University Press, New York, USA (2014). | DOI | MR | Zbl

[46] A. Mantzaflaris and B. Jüttle, Integration by interpolation and look-up for Galerkin-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 284 (2015) 373–400. | DOI | MR | Zbl

[47] P.A. Markowich, Applied Partial Differential Equations: A visual approach. Springer-Verlag, Berlin, Heidelberg (2007). | MR | Zbl

[48] J. Martinze-Frutos, M. Kessler, M. Münch and F. Periago, Robust optimal Robin boundary control for the transient heat equation with random input data. Numer. Methods Eng. 108 (2016) 116–135. | DOI | MR

[49] J. Martinze-Frutos, M. Kessler, M. Münch and F. Periago, Robust optimal shape design for an ellipitc PDE with uncertainty in its input data. ESAIM: COCV 21 (2015) 901–923. | Numdam | MR | Zbl

[50] H.G. Matthies and A. Keese, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194 (2005) 1295–1331. | DOI | MR | Zbl

[51] U. Mosco, Convergence of convex sets and solutions of variational inequalities. Adv. Math. 3 (1969) 510–585. | DOI | MR | Zbl

[52] B.S. Mordukhovich, Optimal control and feedback design of state-constrained parabolic systems in uncertainty conditions. Appl. Anal. 90 (2011) 1075–1109. | DOI | MR | Zbl

[53] I.P. Natanson, Theorie der Funktionen einer reellen Variablen. Akademie-Verlag, Berlin (1975). | DOI | MR

[54] F.R. Nobile Tempone, Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients. Int. J. Numer. Meth. Eng. 80 (2009) 979–1006. | DOI | MR | Zbl

[55] A. Prékopa, On logarithmic concave measures and functions. Acta Sci. Math. 34 (1973) 335–343. | MR | Zbl

[56] A. Prékopa, Stochastic programming. Kluwer Academic Publishers, Dordrecht, The Netherlands (1995). | DOI | MR | Zbl

[57] M. Raissi, Deep hidden physics models: Deep learning of nonlinear partial differential equations. J. Mach. Learn. Res. 19 (2018) 1–24. | MR | Zbl

[58] E. Rosseel and G.N. Wells, Optimal control with stochastic PDE constraints and uncertain controls. Comput. Methods in Appl. Mech. Eng. 213/216 (2012) 152–167. | DOI | MR | Zbl

[59] S. Sankaran, Stochastic optimization using a sparse grid collocation scheme. Prob. Eng. Mech. 24 (2009) 382–396. | DOI

[60] H. Tiesler, R.M. Kirby, D. Xiu and T. Preusser, Stochastic collocation for optimal control problems with stochastic PDE constraints. SIAM J. Control Optim. 50 (2012) 2659–2682. | DOI | MR | Zbl

[61] F. Tröltzsch, Optimal control of partial differential equations: Theory, methods and applications. Graduate Studies in Mathematics, Vol. 112. American Mathematical Society, Providence, Rhode Island, USA (2010). | DOI | MR | Zbl

[62] W. Van Ackooij and P. Pérez-Aros, Generalized differentiation of probability functions acting on an infinite system of constraints. SIAM J. Optim. 29 (2019) 2179–2210. | DOI | MR | Zbl

[63] W. Van Ackooij, Eventual convexity of chance constrained feasible sets. Optimization 64 (2015) 1263–1284. | DOI | MR | Zbl

[64] D. Xiu and G.E. Karniadakis, Solving elliptic problems with non-Gaussian spatially-dependent random coefficients. Comput. Methods Appl. Mech. Eng. 198 (2009) 1985–1995. | DOI | MR | Zbl

Cité par Sources :

The authors would like to express their indebtedness to the Deutsche Forschungsgemeinschaft (DFG) for the financial support under the grants Nr. LI806/13-1 and Nr. LI806/13-2.