Multiplicity-induced-dominancy in parametric second-order delay differential equations: Analysis and application in control design
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 57.

This work revisits recent results on maximal multiplicity induced-dominancy for spectral values in reduced-order time-delay systems and extends it to the general class of second-order retarded differential equations. A parametric multiplicity-induced-dominancy property is characterized, allowing to a delayed stabilizing design with reduced complexity. As a matter of fact, the approach is merely a delayed-output-feedback where the candidates’ delays and gains result from the manifold defining the maximal multiplicity of a real spectral value, then, the dominancy is shown using the argument principle. Sensitivity of the control design with respect to the parameters uncertainties/variation is discussed. Various reduced order examples illustrate the applicative perspectives of the approach.

DOI : 10.1051/cocv/2019073
Classification : 4C60, 34K06, 35B35, 70J25
Mots-clés : Time-delay systems, stability and stabilization, exponential decay, pole-placement, control design
@article{COCV_2020__26_1_A57_0,
     author = {Boussaada, Islam and Niculescu, Silviu-Iulian and El-Ati, Ali and P\'erez-Ramos, Redamy and Trabelsi, Karim},
     title = {Multiplicity-induced-dominancy in parametric second-order delay differential equations: {Analysis} and application in control design},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019073},
     mrnumber = {4147584},
     zbl = {1453.34098},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019073/}
}
TY  - JOUR
AU  - Boussaada, Islam
AU  - Niculescu, Silviu-Iulian
AU  - El-Ati, Ali
AU  - Pérez-Ramos, Redamy
AU  - Trabelsi, Karim
TI  - Multiplicity-induced-dominancy in parametric second-order delay differential equations: Analysis and application in control design
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019073/
DO  - 10.1051/cocv/2019073
LA  - en
ID  - COCV_2020__26_1_A57_0
ER  - 
%0 Journal Article
%A Boussaada, Islam
%A Niculescu, Silviu-Iulian
%A El-Ati, Ali
%A Pérez-Ramos, Redamy
%A Trabelsi, Karim
%T Multiplicity-induced-dominancy in parametric second-order delay differential equations: Analysis and application in control design
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019073/
%R 10.1051/cocv/2019073
%G en
%F COCV_2020__26_1_A57_0
Boussaada, Islam; Niculescu, Silviu-Iulian; El-Ati, Ali; Pérez-Ramos, Redamy; Trabelsi, Karim. Multiplicity-induced-dominancy in parametric second-order delay differential equations: Analysis and application in control design. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 57. doi : 10.1051/cocv/2019073. http://www.numdam.org/articles/10.1051/cocv/2019073/

[1] L.V. Ahlfors, Complex Analysis, McGraw-Hill, Inc., New York (1979). | MR | Zbl

[2] S. Amrane, F. Bedouhene, I. Boussaada and S.-I. Niculescu, On qualitative properties of low-degree quasipolynomials: Further remarks on the spectral abscissa and rightmost-roots assignment. Bull. Math. Soc. Sci. Math. Roumanie 61 (2018) 361–381. | MR | Zbl

[3] R. Bellman and K. Cooke, Differential-difference Equations. Academic Press, New York (1963). | MR | Zbl

[4] S.P. Bhattacharyya, H. Chapellat and L.H. Keel, Robust Control: The Parametric Approach, Prentice-Hall information and system sciences series. Prentice Hall PTR (1995). | Zbl

[5] F.G Boese, Stability with respect to the delay: On a paper of k. l. cooke and p. van den driessche. J. Math. Anal. Appl. 228 (1998) 293–321. | DOI | MR | Zbl

[6] I. Boussaada, I.-C. Morarescu and S.-I. Niculescu, Inverted pendulum stabilization: Characterization of codimension-three triple zero bifurcation via multiple delayed proportional gains. Syst. Contr. Lett. 82 (2015) 1–9. | DOI | MR | Zbl

[7] I. Boussaada and S-I. Niculescu, Computing the codimension of the singularity at the origin for delay systems: The missing link with Birkhoff incidence matrices. 21st International Symposium on Mathematical Theory of Networks and Systems, 1–8 (2014).

[8] I. Boussaada and S-I. Niculescu. Characterizing the codimension of zero singularities for time-delay systems. Acta Applicandae Mathematicae 145 (2016) 47–88. | DOI | MR | Zbl

[9] I. Boussaada and S.I. Niculescu, Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials: A Vandermonde-based approach. IEEE Trans. Autom. Contr. 61 (2016) 1601–1606. | DOI | MR | Zbl

[10] I. Boussaada and S.-I. Niculescu, On the dominancy of multiple spectral values for time-delay systems with applications. IFAC-PapersOnLine 51 (2018) 5–60. | DOI

[11] I. Boussaada, S.-I. Niculescu, S. Tliba and T. Vyhlídal, On the coalescence of spectral values and its effect on the stability of time-delay systems: Application to active vibration control. Procedia IUTAM 22 (2017) 75–82. | DOI

[12] I. Boussaada, S.-I. Niculescu and K. Trabelsi, Toward a decay rate assignment based design for time-delay systems with multiple spectral values, in Proceeding of the 23rd International Symposium on Mathematical Theory of Networks and Systems (2018) 864–871.

[13] I. Boussaada, S. Tliba, S.-I. Niculescu, H. Unal and T. Vyhlídal, Further remarks on the effect of multiple spectral values on the dynamics of time-delay systems. application to the control of a mechanical system. Linear Algebra Appl. 542 (2018) 589–604. | DOI | MR | Zbl

[14] I. Boussaada, S. Tliba, S.-I. Niculescu, H. Unal and T. Vyhlídal, Proceedings of the 20th ILAS Conference, Leuven, Belgium (2016).

[15] I. Boussaada, H. Unal and S.-I. Niculescu, Multiplicity and stable varieties of time-delay systems: A missing link, in Proceeding of the 22nd International Symposium on Mathematical Theory of Networks and Systems (2016).

[16] D. Breda, On characteristic roots and stability charts of delay differential equations. Int. J. Robust Nonlinear Contr. 22 (2012) 892–917. | DOI | MR | Zbl

[17] K.L. Cooke, Stability analysis for a vector disease model. Rocky Mountain J. Math. 9 (1979) 31–42. | DOI | MR | Zbl

[18] K.-L. Cooke and P. Van Den Driessche, On zeroes of some transcendental equations. Funkcial. Ekvac. 29 (1986) 77–90. | MR | Zbl

[19] K. Engelborghs and D. Roose, On stability of lms methods and characteristic roots of delay differential equations. SIAM J. Numer. Anal. 40 (2003) 629–650. | DOI | MR | Zbl

[20] K. Gu, J. Chen and V. Kharitonov, Stability of Time-Delay Systems, Birkhauser Boston, Inc., Cambridge, MA, (2003). | DOI | MR | Zbl

[21] J.K. Hale and S.M. Verduyn Lunel, Introduction to functional differential equations, Applied Mathematics Sciences, Vol. 99, Springer Verlag, New York, 1993. | DOI | MR | Zbl

[22] B.D. Hassard, Counting roots of the characteristic equation for linear delay-differential systems. J. Differ. Equ. 136 (1997) 222–235. | DOI | MR | Zbl

[23] N.D. Hayes, Roots of the transcendental equation associated with a certain difference-differential equation. J. London Math. Soc. 25 (1950) 226–232. | DOI | MR | Zbl

[24] T. Insperger and G. Stépán, Semi-Discretization for Time-Delay Systems: Stability and Engineering Applications, Applied Mathematics Sciences. Springer, Berlin (2011). | DOI | MR | Zbl

[25] V.L. Kharitonov, S.-I. Niculescu, J. Moreno and W. Michiels, Static output feedback stabilization: necessary conditions for multiple delay controllers. IEEE Trans. Automat. Contr. 50 (2005) 82–86. | DOI | MR | Zbl

[26] O. Kirillov and M. Overton, Robust stability at the swallowtail singularity. Front. Phys. 1 (2013) 4. | DOI

[27] M. Landry, S.A. Campbell, K. Morris and C.O. Aguilar, Dynamics of an inverted pendulum with delayed feedback control. SIAM J. Appl. Dyn. Syst. 4 (2005) 333–351. | DOI | MR | Zbl

[28] J.J. Loiseau, Invariant factors assignment for a class of time-delay systems. Kybernetika 37 (2001) 265–275. | MR | Zbl

[29] D. Ma and J. Chen, Delay margin of low-order systems achievable by pid controllers. IEEE Trans. Automat. Contr. 64 (2019) 1958–1973. | DOI | MR | Zbl

[30] A. Manitius, Feedback controllers for a wind tunnel model involving a delay: Analytical design and numerical simulation. IEEE Trans. Automat. Contr. 29 (1984) 1058–1068. | DOI | MR

[31] A. Manitius and A. Olbrot, Finite spectrum assignment problem for systems with delays. IEEE Trans. Automat. Contr. 24 (1979) 541–552. | DOI | MR | Zbl

[32] M. Marden, Geometry of Polynomials, Number 3 in Geometry of Polynomials. American Mathematical Society, Providence, Rhode Island, USA, 1949. | MR | Zbl

[33] W. Michiels, I. Boussaada and S-I. Niculescu, An explicit formula for the splitting of multiple eigenvalues for nonlinear eigenvalue problems and connections with the linearization for the delay eigenvalue problem. SIAM J. Matrix Anal. Appl. 38 (2017) 599–620. | DOI | MR | Zbl

[34] W. Michiels, K. Engelborghs, P. Vansevenant and D. Roose, Continuous pole placement for delay equations. Automatica 38 (2002) 747–761. | DOI | MR | Zbl

[35] W. Michiels and S.-I. Niculescu, Stability and stabilization of time-delay systems, Advances in Design and Control. SIAM, Philadelphia, USA (2007). | MR | Zbl

[36] A.V. Mikhailov, The methods of harmonie analysis in the theory of control. Avtomat. i Telemekh 3 (1938) 27–81.

[37] S. Mondie and J.J. Loiseau, Finite spectrum assignment for input delay systems. IFAC Proc. 34 (2001) 201–206.

[38] T. Mori, N. Fukuma and M. Kuwahara, On an estimate of the decay rate for stable linear delay systems. Int. J. Contr. 36 (1982) 95–97. | DOI | MR | Zbl

[39] T. Mori and H. Kokame, Stability of x ˙ ( t ) = A x ( t ) + B x ( t - τ ) . IEEE Trans. Automat. Contr. 34 (1989) 460–462. | MR | Zbl

[40] S.-I. Niculescu and W. Michiels, Stabilizing a chain of integrators using multiple delays. IEEE Trans. Automat. Contr. 49 (2004) 802–807. | DOI | MR | Zbl

[41] S.-I. Niculescu, W. Michiels, K. Gu and C.-T. Abdallah, Delay Effects on Output Feedback Control of Dynamical Systems. Springer Berlin Heidelberg, Berlin, Heidelberg (2010) 63–84. | Zbl

[42] H. Nyquist, Regeneration theory. Bell Syst. Techn. J. 11 (1932) 126–147. | DOI | Zbl

[43] N. Olgac and R. Sipahi, An exact method for the stability analysis of time delayed linear time-invariant (lti) systems. IEEE Trans. Automat. Contr. 47 (2002) 793–797. | DOI | MR | Zbl

[44] N. Olgac and R. Sipahi, An exact method for the stability analysis of time-delayed lti systems. IEEE Trans. Automat. Contr. 47 (2002) 793–797. | DOI | MR | Zbl

[45] L. Pekař, Nyquist criterion for systems with distributed delays. Ann. DAAAM Proc. (2011) 485–487. | DOI

[46] L. Pekař, R. Prokop and R. Matusu, A stability test for control systems with delays based on the nyquist criterion. Int. J. Math. Mod. Meth. Appl. Sci. 5 (2011) 1213–1224.

[47] G. Pólya and G. Szegő. Problems and Theorems in Analysis, Vol. 1, Integral Calculus, Theory of Functions, Springer-Verlag, New York, Heidelberg, Berlin (1972). | MR | Zbl

[48] A. Ramirez, S. Mondie, R. Garrido and R. Sipahi, Design of proportional-integral-retarded (pir) controllers for second-order lti systems. IEEE Trans. Automat. Contr. 99 (2015) 1–6. | MR | Zbl

[49] Z.V. Rekasius, A stability test for systems with delays. Joint Automat. Contr. Conf. 17 (1980) 39.

[50] S. Ruan, Delay differential equations in single species dynamics, in Delay Differential Equations and Applications, Springer, Berlin (2006) 477–517. | DOI | MR | Zbl

[51] W. Rudin, Real and complex analysis, In Mathematics series, McGraw-Hill. New York (1987). | MR | Zbl

[52] J. Sieber and B. Krauskopf, Bifurcation analysis of an inverted pendulum with delayed feedback control near a triple-zero eigenvalue singularity. Nonlinearity 17 (2004) 85–103. | DOI | MR | Zbl

[53] J. Sieber and B. Krauskopf, Extending the permissible control loop latency for the controlled inverted pendulum. Dyn. Syst. 20 (2005) 189–199. | DOI | MR | Zbl

[54] R. Sipahi, S.I. Niculescu, C.T. Abdallah, W. Michiels and K. Gu, Stability and stabilization of systems with time delay. IEEE Contr. Syst. 31 (2011) 38–65. | DOI | MR | Zbl

[55] G. Stépán, Retarded Dynamical Systems: Stability and Characteristic Functions, Pitman research notes in mathematics series. Longman Scientific and Technical, London (1989). | MR | Zbl

[56] I.H. Suh and Z. Bien, Proportional minus delay controller. IEEE Trans. Automat. Contr. 24 (1979) 370–372. | DOI | MR | Zbl

[57] J. Vanbiervliet, K. Verheyden, W. Michiels and S. Vandewalle, A nonsmooth optimisation approach for the stabilisation of time-delay systems. ESAIM: COCV 14 (2008) 478–493. | Numdam | MR | Zbl

[58] T. Vyhlídal and P. Zitek, Mapping based algorithm for large-scale computation of quasi-polynomial zeros. IEEE Trans. Automat. Contr. 54 (2009) 171–177. | DOI | MR | Zbl

[59] K. Walton and J.E. Marshall, Direct method for tds stability analysis. IEE Proc. D Contr. Theor. Appl. 134 (1987) 101–107. | DOI | Zbl

[60] E.M. Wright, Stability criteria and the real roots of a transcendental equation. J. Soc. Ind. Appl. Math. 9 (1961) 136–148. | DOI | MR | Zbl

[61] Q. Xu, G. Stépán and Z. Wang, Delay-dependent stability analysis by using delay-independent integral evaluation. Automatica 70 (2016) 153–157. | DOI | MR | Zbl

[62] S. Yi, P. Nelson and G. Ulsoy, Time-Delay Systems. World Scientific, Singapore (2010). | DOI | MR | Zbl

[63] P. Zitek, J. Fiser and T. Vyhlidal, Dimensional analysis approach to dominant three-pole placement in delayed pid control loops. J. Process Contr. 23 (2013) 1063–1074. | DOI

Cité par Sources :

The content of this paper was partially presented in The 23rd International Symposium on Mathematical Theory of Networks and Systems July 16-20, 2018. Hong Kong.