Carleman estimates for time-discrete parabolic equations and applications to controllability
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 12.

In this paper, we prove a Carleman estimate for a time-discrete parabolic operator under some condition relating the large Carleman parameter to the time step of the discretization scheme. This estimate is then used to obtain relaxed observability estimates that yield, by duality, some controllability results for linear and semi-linear time-discrete parabolic equations. We also discuss the application of this Carleman estimate to the controllability of time-discrete coupled parabolic systems.

DOI : 10.1051/cocv/2019072
Classification : 35K20, 65M06, 93B05, 93B07, 93C55
Mots-clés : Carleman estimates, time-discrete heat equation, observability, null controllability
@article{COCV_2020__26_1_A12_0,
     author = {Boyer, Franck and Hern\'andez-Santamar{\'\i}a, V{\'\i}ctor},
     title = {Carleman estimates for time-discrete parabolic equations and applications to controllability},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019072},
     mrnumber = {4064474},
     zbl = {1442.93006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019072/}
}
TY  - JOUR
AU  - Boyer, Franck
AU  - Hernández-Santamaría, Víctor
TI  - Carleman estimates for time-discrete parabolic equations and applications to controllability
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019072/
DO  - 10.1051/cocv/2019072
LA  - en
ID  - COCV_2020__26_1_A12_0
ER  - 
%0 Journal Article
%A Boyer, Franck
%A Hernández-Santamaría, Víctor
%T Carleman estimates for time-discrete parabolic equations and applications to controllability
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019072/
%R 10.1051/cocv/2019072
%G en
%F COCV_2020__26_1_A12_0
Boyer, Franck; Hernández-Santamaría, Víctor. Carleman estimates for time-discrete parabolic equations and applications to controllability. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 12. doi : 10.1051/cocv/2019072. http://www.numdam.org/articles/10.1051/cocv/2019072/

[1] O. Bodart, M. González-Burgos and R. Pérez-García, Insensitizing controls for a heat equation with a nonlinear term involving the state and the gradient. Nonlinear Anal. 57 (2004) 687–711. | DOI | MR | Zbl

[2] F. Boyer, On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems. ESAIM Proc. 41 (2013) 15–58. | DOI | MR | Zbl

[3] F. Boyer, V. Hernández-Santamaría and L. De Teresa, Insensitizing controls for a semilinear parabolic equation: a numerical approach. Math. Control Relat. Fields 9 (2019) 117–158. | DOI | MR | Zbl

[4] F. Boyer, F. Hubert and J. Le Rousseau, Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations. J. Math. Pures Appl. 93 (2010) 240–276. | DOI | MR | Zbl

[5] F. Boyer, F. Hubert and J. Le Rousseau, Uniform null-controllability for space/time-discretized parabolic equations. Numer. Math. 118 (2011) 601–661. | DOI | MR | Zbl

[6] F. Boyer and J. Le Rousseau, Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014) 1035–1078. | DOI | Numdam | MR | Zbl

[7] S. Ervedoza and J. Valein, On the observability of abstract time-discrete linear parabolic equations. Rev. Mat. Complut. 23 (2010) 163–190. | DOI | MR | Zbl

[8] S. Ervedoza, C. Zheng and E. Zuazua, On the observability of time-discrete conservative linear systems. J. Funct. Anal. 254 (2008) 3037–3078. | DOI | MR | Zbl

[9] C. Fabre, J.P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. Royal Soc. Edinburgh 125A (1995) 31–61. | DOI | MR | Zbl

[10] E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45 (2006) 1395–1446. | DOI | MR | Zbl

[11] E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 583–616. | DOI | Numdam | MR | Zbl

[12] A. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations. Lecture Notes, Research Institute of Mathematics, Seoul National University, Korea (1996). | MR | Zbl

[13] M. González-Burgos and L. De Teresa, Controllability results for cascade systems of m coupled parabolic PDEs by one control force. Portugal. Math. 67 (2010) 91–113. | DOI | MR | Zbl

[14] M. Gueye, Insensitizing controls for the Navier-Stokes equations. Ann. I. H. Poincaré–AN 30 (2013) 825–844. | DOI | Numdam | MR | Zbl

[15] G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur. Comm. Partial Differ. Equ. 20 (1995) 335–356. | DOI | MR | Zbl

[16] G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity. Arch. Rational Mech. Anal. 141 (1998) 297–329. | DOI | MR | Zbl

[17] J.-L. Lions, Quelques notions dans l’analyse et le contrôle de systèmes à données incomplètes. Proceedings of the XIth Congress on Differential Equations and Applications/First Congress on Applied Mathematics, University of Málaga (1990) 43–54. | MR | Zbl

[18] P. Lissy, Y. Privat and Y. Simpore, Insensitizing control for linear and semi-linear heat equations with partially unknown domain. ESAIM: COCV (2018). | Numdam | MR | Zbl

[19] L. De Teresa, Insensitizing controls for a semilinear heat equation. Comm. Partial Differ. Equ. 25 (2000) 39–72. | DOI | MR | Zbl

[20] L. De Teresa and E. Zuazua, Identification of the class of initial data for the insensitizing control of the heat equation. Commun. Pure. Appl. Anal. 8 (2009) 457–471. | DOI | MR | Zbl

[21] D. Xu, On the Observability of Time Discrete Integro-differential Systems. Appl. Math. Optim. (2019). | MR | Zbl

[22] X. Zhang C. Zheng and E. Zuazua, Time discrete wave equations: boundary observability and control. Discrete Contin. Dyn. Syst. 23 (2009) 571–604. | DOI | MR | Zbl

[23] C. Zheng, Controllability of the time discrete heat equation. Asymptot. Anal. 59 (2008) 139–177. | MR | Zbl

Cité par Sources :

The work of the second author was supported by the Labex CIMI (Centre International de Mathématiques et d’Informatique), ANR-11-LABX-0040-CIMI.