The literature on continuous-time stochastic optimal control seldom deals with the case of discrete state spaces. In this paper, we provide a general framework for the optimal control of continuous-time Markov chains on finite graphs. In particular, we provide results on the long-term behavior of value functions and optimal controls, along with results on the associated ergodic Hamilton-Jacobi equation.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019071
Mots-clés : Optimal control, graphs, asymptotic analysis, Ergodic Hamilton-Jacobi equation
@article{COCV_2020__26_1_A22_0, author = {Gu\'eant, Olivier and Manziuk, Iuliia}, title = {Optimal control on graphs: existence, uniqueness, and long-term behavior}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {26}, year = {2020}, doi = {10.1051/cocv/2019071}, mrnumber = {4068303}, zbl = {1446.49016}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2019071/} }
TY - JOUR AU - Guéant, Olivier AU - Manziuk, Iuliia TI - Optimal control on graphs: existence, uniqueness, and long-term behavior JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2020 VL - 26 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2019071/ DO - 10.1051/cocv/2019071 LA - en ID - COCV_2020__26_1_A22_0 ER -
%0 Journal Article %A Guéant, Olivier %A Manziuk, Iuliia %T Optimal control on graphs: existence, uniqueness, and long-term behavior %J ESAIM: Control, Optimisation and Calculus of Variations %D 2020 %V 26 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2019071/ %R 10.1051/cocv/2019071 %G en %F COCV_2020__26_1_A22_0
Guéant, Olivier; Manziuk, Iuliia. Optimal control on graphs: existence, uniqueness, and long-term behavior. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 22. doi : 10.1051/cocv/2019071. http://www.numdam.org/articles/10.1051/cocv/2019071/
[1] Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Springer Science & Business Media (2008). | Zbl
and ,[2] On the large time behavior of solutions of Hamilton-Jacobi equations. SIAM J. Math. Anal. 31 (2000) 925–939. | DOI | MR | Zbl
and ,[3] 1 of Dynamic programming and optimal control. Athena scientific Belmont, MA (2005). | MR | Zbl
, Vol.[4] 50 of Point processes and queues: martingale dynamics. Springer (1981). | DOI | MR | Zbl
, Vol.[5] Algorithmic and high-frequency trading. Cambridge University Press (2015).
, and ,[6] Sur la convergence du semi-groupe de Lax-Oleinik. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 327 (1998) 267–270. | MR | Zbl
,[7] 25 of Controlled Markov processes and viscosity solutions. Springer Science & Business Media (2006). | MR | Zbl
and , Vol.[8] Existence and uniqueness result for mean field games with congestion effect on graphs. Appl. Math. Optim. 72 (2015) 291–303. | DOI | MR | Zbl
,[9] 33 of The Financial Mathematics of Market Liquidity: From optimal execution to market making. CRC Press (2016). | DOI | MR
, Vol.[10] Homogenization of Hamilton-Jacobi equations. Unpublished work, 1986.
, and ,[11] Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations. Commun. Partial Differ. Equ. 24 (1999) 883–893. | DOI | MR | Zbl
and ,[12] Reinforcement learning: An introduction. MIT Press (2018). | MR
and ,Cité par Sources :
The authors would like to thank Guillaume Carlier (Université Paris Dauphine), Jean-Michel Lasry (Institut Louis Bachelier), and Jean-Michel Roquejoffre (Université Paul Sabatier) for the discussions they had on the subject.