Spectra of operator pencils with small đť’«đť’Ż-symmetric periodic perturbation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 21.

We study the spectrum of a quadratic operator pencil with a small đť’«đť’Ż-symmetric periodic potential and a fixed localized potential. We show that the continuous spectrum has a band structure with bands on the imaginary axis separated by usual gaps, while on the real axis, there are no gaps but at certain points, the bands bifurcate into small parabolas in the complex plane. We study the isolated eigenvalues converging to the continuous spectrum. We show that they can emerge only in the aforementioned gaps or in the vicinities of the small parabolas, at most two isolated eigenvalues in each case. We establish sufficient conditions for the existence and absence of such eigenvalues. In the case of the existence, we prove that these eigenvalues depend analytically on a small parameter and we find the leading terms of their Taylor expansions. It is shown that the mechanism of the eigenvalue emergence is different from that for small localized perturbations studied in many previous works.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019070
Classification : 34B07, 34K27
Mots-clés : Quadratic operator pencil, PT-symmetric periodic perturbation, band spectrum, emerging eigenvalue, asymptotics
@article{COCV_2020__26_1_A21_0,
     author = {Borisov, Denis and Cardone, Giuseppe},
     title = {Spectra of operator pencils with small {\ensuremath{\mathscr{P}}\ensuremath{\mathscr{T}}-symmetric} periodic perturbation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019070},
     mrnumber = {4068302},
     zbl = {1444.47023},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019070/}
}
TY  - JOUR
AU  - Borisov, Denis
AU  - Cardone, Giuseppe
TI  - Spectra of operator pencils with small đť’«đť’Ż-symmetric periodic perturbation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019070/
DO  - 10.1051/cocv/2019070
LA  - en
ID  - COCV_2020__26_1_A21_0
ER  - 
%0 Journal Article
%A Borisov, Denis
%A Cardone, Giuseppe
%T Spectra of operator pencils with small đť’«đť’Ż-symmetric periodic perturbation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019070/
%R 10.1051/cocv/2019070
%G en
%F COCV_2020__26_1_A21_0
Borisov, Denis; Cardone, Giuseppe. Spectra of operator pencils with small đť’«đť’Ż-symmetric periodic perturbation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 21. doi : 10.1051/cocv/2019070. http://www.numdam.org/articles/10.1051/cocv/2019070/

[1] M. Bender, G.V. Dunne and P.N. Meisinger, Complex periodic potentials with real band spectra. Phys. Lett. A 252 (1999) 272–276. | DOI | MR | Zbl

[2] F.A. Berezin and M.A. Shubin, The Schrödinger equation. Kluwer, Dordrecht (1991). | DOI | MR | Zbl

[3] D. Borisov, Discrete spectrum of an asymmetric pair of waveguides coupled through a window. Sbornik Math. 197 (2006) 475–504. | DOI | MR | Zbl

[4] D. Borisov, On the spectrum of a Schroedinger operator perturbed by a rapidly oscillating potential. J. Math. Sci. 139 (2006) 6243–6322. | DOI | MR | Zbl

[5] D. Borisov, On spectrum of two-dimensional periodic operator with small localized perturbation. Izv. Math. 75 (2011) 471–505. | DOI | MR | Zbl

[6] D. Borisov and R.R. Gadyl’Shin, On spectrum of periodic operator with a small localized perturbation. Izv. Math. 72 (2008) 659–688. | DOI | Zbl

[7] D. Borisov and G. Cardone, Planar waveguide with “twisted” boundary conditions: discrete spectrum. J. Math. Phys. 52 (2011) 123513. | DOI | MR | Zbl

[8] D. Borisov and K.V. Pankrashkin, Quantum waveguides with small periodic perturbations: gaps and edges of Brillouin zones. J. Phys. A. Math. Theor. 46 (2013) 235203. | DOI | MR | Zbl

[9] D. Borisov and S. Dmitriev, On the spectral stability of kinks in 2D Klein-Gordon model with parity-time-symmetric perturbation. Stud. Appl. Math. 138 (2017) 317–342. | DOI | MR | Zbl

[10] D. Borisov and M. Znojil, On eigenvalues of a PT-symmetric operator in a thin layer. Sbornik Math. 208 (2017) 173–199. | DOI | MR | Zbl

[11] E. Caliceti and S. Graffi, Reality and non-reality of the spectrum of 𝒫𝒯-symmetric operators: Operator-theoretic criteria Pramana J. Phys. 73 (2009) 241–249.

[12] G. Cardone, S.A. Nazarov and K. Ruotsalainen, Bound states of a converging quantum waveguide. ESAIM: M2AN 47 (2013) 305–15. | DOI | Numdam | MR | Zbl

[13] C.W. Curtis and M.J. Ablowitz, On the existence of real spectra in đť’«đť’Ż-symmetric honeycomb optical lattices. J. Phys. A: Math. Theor. 47 (2014) 225205. | DOI | MR | Zbl

[14] C.W. Curtis and Yi Zhu. Dynamics in 𝒫𝒯-symmetric honeycomb lattices with nonlinearity. Stud. Appl. Math. 135 (2015) 139–170. | DOI | MR | Zbl

[15] A. Demirkaya, T. Kapitula, P.G. Kevrekidis, M. Stanislavova and A. Stefanov, On the spectral stability of kinks in some PT-symmetric variants of the classical Klein-Gordon field theories. Stud. Appl. Math. 133 (2014) 298–317. | DOI | MR | Zbl

[16] T. Dohnal and D. Pelinovsky, Bifurcation of nonlinear bound states in the periodic Gross-Pitaevskii equation with đť’«đť’Ż-symmetry. To appear Proc. Royal Soc. Edinburgh Sect. A: Math., DOI: (to appear). | DOI | MR | Zbl

[17] P. Duclos and P. Exner, Curvature-induced bound states in quantum waveguides in two and three dimensions. Rev. Math. Phys. 7 (1995) 73–102. | DOI | MR | Zbl

[18] P. Duclos, P. Exner and D. Krejčiřík, Bound states in curved quantum layers. Commun. Math. Phys. 223 (2001) 13–28. | DOI | MR | Zbl

[19] R. El-Ganainy, K.G. Makris, M. Khajavikhan, Z.H. Musslimani, S. Rotter and D.N. Christodoulides, Non-Hermitian physics and PT symmetry. Nat. Phys. 14 (2018) 11–19. | DOI

[20] P. Exner, P. Šeba, M. Tater and D. Vaněck, Bound states and scattering in quantum waveguides coupled laterally through a boundary window. J. Math. Phys. 37 (1996) 4867–4887. | DOI | MR | Zbl

[21] L. Feng, R. El-Ganainy and Li Ge, Non-Hermitian photonics based on parity time symmetry. Nat. Photonics 11 (2017) 752–762. | DOI

[22] R.R. Gadyl’Shin, On regular and singular perturbations of acoustic and quantum waveguides. C.R. Mech. 332 (2004) 647–652. | DOI | Zbl

[23] F. Gesztesy and H. Holden, A unified approach to eigenvalues and resonances of Schrödinger operators using Fredholm determinants. J. Math. Anal. Appl. 123 (1987) 181–198. | DOI | MR | Zbl

[24] I.M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators. Israel Program for Scientific Transl., Jerusalem (1965). | MR | Zbl

[25] M. Klaus and B. Simon, Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short range two-body case. Ann. Phys. 130 (1980) 251–281. | DOI | MR | Zbl

[26] V.V. Konotop, J. Yang and D.A. Zezyulin, Nonlinear waves in PT-symmetric systems. Rev. Modern Phys. 88 (2016) 035002. | DOI

[27] D. Krejčiřík, P. Siegl, M. Tater and J. Viola, Pseudospectra in non-Hermitian quantum mechanics, J. Math. Phys. 56 (2015) 103513. | DOI | MR | Zbl

[28] B. Mityagin, P. Siegl and J. Viola, Differential operators admitting various rates of spectral projection growth. J. Funct. Anal. 272 (2017) 3129–3175. | DOI | MR | Zbl

[29] H. Najar and O. Olendski, Spectral and localization properties of the Dirichlet wave guide with two concentric Neumann discs. J. Phys. A: Math. Theor. 44 (2011) 305304. | DOI | MR | Zbl

[30] S.A. Nazarov, Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold. Siberian Math. J. 51 (2010) 866–878. | DOI | MR | Zbl

[31] O. Olendski and L. Mikhailovska, A straight quantum wave guide with mixed Dirichlet and Neumann boundary conditions in uniform magnetic fields. J. Phys. A: Math. Theor. 40 (2007) 4609–4634. | DOI | MR | Zbl

[32] L. Parnovski and R. Shterenberg. Perturbation theory for almost-periodic potentials I. One-dimensional case. Commun. Math. Phys. 366 (2019) 1229–1257. | DOI | MR | Zbl

[33] D. Saadatmand, S.V. Dmitriev, D. Borisov and P.G. Kevrekidis, Interaction of sine-Gordon kinks and breathers with a parity-time-symmetric defect. Phys. Rev. E 90 (2014) 052902. | DOI

[34] D. Saadatmand, D.I. Borisov, P.G. Kevrekidis, K. Zhou and S.V. Dmitriev, Resonant interaction of ϕ4 kink with spatially periodic 𝒫𝒯-symmetric perturbation. Comm. Nonl. Sci. Numer. Simul. 56 (2018) 62–76. | DOI | MR | Zbl

[35] K.C. Shin, On the shape of spectra for non-self-adjoint periodic Schrödinger operators. J. Phys. A. Math. Gen. 37 (2004) 8287–8292. | DOI | MR | Zbl

[36] B. Simon, The bound state of weakly coupled Schrödinger operators in one and two dimensions. Ann. Phys. 97 (1976) 279–288. | DOI | MR | Zbl

[37] S.V. Suchkov, A.A. Sukhorukov, J. Huang, S.V. Dmitriev, C. Lee and Y.S. Kivshar, Nonlinear switching and solitons in PT-symmetric photonic systems. Laser Photonics Rev. 10 (2016) 177–213. | DOI

[38] O. Veliev, On the spectral properties of the Schrödinger operator with a periodic PT-symmetric potential. Int. J. Geom. Meth. Modern Phys. 14 (2017) 1750065. | DOI | MR | Zbl

[39] O. Veliev, The spectrum of the Hamiltonian with a PT-symmetric periodic optical potential. Int. J. Geom. Meth. Modern Phys. 15 (2018) 1850008. | DOI | MR | Zbl

[40] J. Yang, Classes of non-parity-time-symmetric optical potentials with exceptional-point-free phase transitions. Optics Lett. 42 (2017) 4067–4070. | DOI

[41] V.A. Zheludev, Eigenvalues of the perturbed Schrödinger operators with a periodic potential. Topics Math. Phys. 2 (1968) 87–101.

Cité par Sources :