Higher integrability for the gradient of Mumford-Shah almost-minimizers
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 6.

We extend a recent higher-integrability result for the gradient of minimizers of the Mumford-Shah functional to a suitable class of almost-minimizers. The extension crucially depends on an L gradient estimate up to regular portions of the discontinuity set of an almost-minimizer.

DOI : 10.1051/cocv/2019063
Classification : 49N60, 49Q20, 26B30, 94A08
Mots-clés : Mumford-Shah energy, regularity theory, SBV functions, discontinuity set, almost-minimizers, higher integrability, excess decay
@article{COCV_2020__26_1_A6_0,
     author = {Piontek, Sebastian and Schmidt, Thomas},
     title = {Higher integrability for the gradient of {Mumford-Shah} \protect\emph{almost}-minimizers},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019063},
     mrnumber = {4062159},
     zbl = {1439.49070},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019063/}
}
TY  - JOUR
AU  - Piontek, Sebastian
AU  - Schmidt, Thomas
TI  - Higher integrability for the gradient of Mumford-Shah almost-minimizers
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019063/
DO  - 10.1051/cocv/2019063
LA  - en
ID  - COCV_2020__26_1_A6_0
ER  - 
%0 Journal Article
%A Piontek, Sebastian
%A Schmidt, Thomas
%T Higher integrability for the gradient of Mumford-Shah almost-minimizers
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019063/
%R 10.1051/cocv/2019063
%G en
%F COCV_2020__26_1_A6_0
Piontek, Sebastian; Schmidt, Thomas. Higher integrability for the gradient of Mumford-Shah almost-minimizers. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 6. doi : 10.1051/cocv/2019063. http://www.numdam.org/articles/10.1051/cocv/2019063/

[1] L. Ambrosio, A compactness theorem for a new class of functions of bounded variation. Boll. Unione Mat. Ital., VII. Ser., B 3 (1989) 857–881 | MR | Zbl

[2] L. Ambrosio, Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111 (1990) 291–322 | DOI | MR | Zbl

[3] L. Ambrosio, N. Fusco and J. E. Hutchinson, Higher integrability of the gradient and dimension of the singular set for minimisers of the Mumford-Shah functional. Calc. Var. Partial Differ. Equ. 16 (2003) 187–215 | DOI | MR | Zbl

[4] L. Ambrosio, N. Fusco and D. Pallara, Partial regularity of free discontinuity sets, II. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 24 (1997) 39–62 | Numdam | MR | Zbl

[5] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications. Clarendon Press (2000) | DOI | MR | Zbl

[6] L. Ambrosio and D. Pallara, Partial regularity of free discontinuity sets, I. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 24 (1997) 1–38 | Numdam | MR | Zbl

[7] G. Anzellotti, On the C 1 , α -regularity of ω -minima of quadratic functionals. Boll. Unione Mat. Ital., VI. Ser., C, Anal. Funz. Appl. 2 (1983) 195–212 | MR | Zbl

[8] A. Bonnet, On the regularity of edges in image segmentation. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 13 (1996) 485–528 | DOI | Numdam | MR | Zbl

[9] G. David, C1-arcs for minimizers of the Mumford-Shah functional. SIAM J. Appl. Math. 56 (1996) 783–888 | DOI | MR | Zbl

[10] G. David, Singular Sets of Minimizers for the Mumford-Shah Functional. Progress in Mathematics. Birkhäuser (2005) | MR | Zbl

[11] E. De Giorgi and L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 82 (1988) 199–210 | Zbl

[12] E. De Giorgi and L. Ambrosio, New functionals in calculus of variations. In Nonsmooth Optimization and Related Topics, edited by F.H. Clarke, V.F. Dem’Yanov and F. Giannessi. Springer Boston (1989) 49–59 | DOI | MR | Zbl

[13] E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set. Arch. Ration. Mech. Anal. 108 (1989) 195–218 | DOI | MR | Zbl

[14] F. Duzaar, A. Gastel and J. F. Grotowski, Partial regularity for almost minimizers of quasi-convex integrals. SIAM J. Math. Anal. 32 (2000) 665–687 | DOI | MR | Zbl

[15] C. De Lellis and M. Focardi, Higher integrability of the gradient for minimizers of the 2d Mumford-Shah energy. J. Math. Pures Appl. (9) 100 (2013) 391–409 | DOI | MR | Zbl

[16] C. De Lellis, M. Focardi and B. Ruffini, A note on the Hausdorff dimension of the singular set for minimizers of the Mumford-Shah energy. Adv. Calc. Var. 7 (2014) 539–545 | DOI | MR | Zbl

[17] G. De Philippis and A. Figalli, Higher integrability for minimizers of the Mumford-Shah functional. Arch. Ration. Mech. Anal. 213 (2014) 491–502 | DOI | MR | Zbl

[18] M. Focardi, Fine regularity results for Mumford-Shah minimizers: porosity, higher integrability and the Mumford-Shah conjecture. In Free discontinuity problems, edited by N. Fusco and A. Pratelli. Edizioni della Normale Scuola Normale Superiore, Pisa (2016) 1–68 | MR | Zbl

[19] N. Fusco, An overview of the Mumford-Shah problem. Milan J. Math. 71 (2003) 95–119 | DOI | MR | Zbl

[20] J.C. Leger, Flatness and finiteness in the Mumford-Shah problem. J. Math. Pures Appl. (9), 78 (1999) 431–459 | DOI | MR | Zbl

[21] F. Maddalena and S. Solimini, Concentration and flatness properties of the singular set of bisected balls. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 30 (2001) 623–659 | Numdam | MR | Zbl

[22] F. Maddalena and S. Solimini, Regularity properties of free discontinuity sets. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 18 (2001) 675–685 | DOI | Numdam | MR | Zbl

[23] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42 (1989) 577–685 | DOI | MR | Zbl

[24] S. Piontek, Höhere Integrierbarkeit für Fast-Minimierer des Mumford-Shah-Funktionals. Master Thesis. University Erlangen-Nuremberg (2016)

[25] S. Rigot, Big pieces of C 1 , α -graphs for minimizers of the Mumford-Shah functional. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 29 (2000) 329–349 | Numdam | MR | Zbl

Cité par Sources :