We extend a recent higher-integrability result for the gradient of minimizers of the Mumford-Shah functional to a suitable class of almost-minimizers. The extension crucially depends on an gradient estimate up to regular portions of the discontinuity set of an almost-minimizer.
Mots-clés : Mumford-Shah energy, regularity theory, SBV functions, discontinuity set, almost-minimizers, higher integrability, excess decay
@article{COCV_2020__26_1_A6_0, author = {Piontek, Sebastian and Schmidt, Thomas}, title = {Higher integrability for the gradient of {Mumford-Shah} \protect\emph{almost}-minimizers}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {26}, year = {2020}, doi = {10.1051/cocv/2019063}, mrnumber = {4062159}, zbl = {1439.49070}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2019063/} }
TY - JOUR AU - Piontek, Sebastian AU - Schmidt, Thomas TI - Higher integrability for the gradient of Mumford-Shah almost-minimizers JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2020 VL - 26 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2019063/ DO - 10.1051/cocv/2019063 LA - en ID - COCV_2020__26_1_A6_0 ER -
%0 Journal Article %A Piontek, Sebastian %A Schmidt, Thomas %T Higher integrability for the gradient of Mumford-Shah almost-minimizers %J ESAIM: Control, Optimisation and Calculus of Variations %D 2020 %V 26 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2019063/ %R 10.1051/cocv/2019063 %G en %F COCV_2020__26_1_A6_0
Piontek, Sebastian; Schmidt, Thomas. Higher integrability for the gradient of Mumford-Shah almost-minimizers. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 6. doi : 10.1051/cocv/2019063. http://www.numdam.org/articles/10.1051/cocv/2019063/
[1] A compactness theorem for a new class of functions of bounded variation. Boll. Unione Mat. Ital., VII. Ser., B 3 (1989) 857–881 | MR | Zbl
,[2] Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111 (1990) 291–322 | DOI | MR | Zbl
,[3] Higher integrability of the gradient and dimension of the singular set for minimisers of the Mumford-Shah functional. Calc. Var. Partial Differ. Equ. 16 (2003) 187–215 | DOI | MR | Zbl
, and ,[4] Partial regularity of free discontinuity sets, II. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 24 (1997) 39–62 | Numdam | MR | Zbl
, and ,[5] Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications. Clarendon Press (2000) | DOI | MR | Zbl
, and ,[6] Partial regularity of free discontinuity sets, I. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 24 (1997) 1–38 | Numdam | MR | Zbl
and ,[7] On the -regularity of -minima of quadratic functionals. Boll. Unione Mat. Ital., VI. Ser., C, Anal. Funz. Appl. 2 (1983) 195–212 | MR | Zbl
,[8] On the regularity of edges in image segmentation. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 13 (1996) 485–528 | DOI | Numdam | MR | Zbl
,[9] C1-arcs for minimizers of the Mumford-Shah functional. SIAM J. Appl. Math. 56 (1996) 783–888 | DOI | MR | Zbl
,[10] Singular Sets of Minimizers for the Mumford-Shah Functional. Progress in Mathematics. Birkhäuser (2005) | MR | Zbl
,[11] Un nuovo tipo di funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 82 (1988) 199–210 | Zbl
and ,[12] New functionals in calculus of variations. In Nonsmooth Optimization and Related Topics, edited by , and . Springer Boston (1989) 49–59 | DOI | MR | Zbl
and ,[13] Existence theorem for a minimum problem with free discontinuity set. Arch. Ration. Mech. Anal. 108 (1989) 195–218 | DOI | MR | Zbl
, and ,[14] Partial regularity for almost minimizers of quasi-convex integrals. SIAM J. Math. Anal. 32 (2000) 665–687 | DOI | MR | Zbl
, and ,[15] Higher integrability of the gradient for minimizers of the 2d Mumford-Shah energy. J. Math. Pures Appl. (9) 100 (2013) 391–409 | DOI | MR | Zbl
and ,[16] A note on the Hausdorff dimension of the singular set for minimizers of the Mumford-Shah energy. Adv. Calc. Var. 7 (2014) 539–545 | DOI | MR | Zbl
, and ,[17] Higher integrability for minimizers of the Mumford-Shah functional. Arch. Ration. Mech. Anal. 213 (2014) 491–502 | DOI | MR | Zbl
and ,[18] Fine regularity results for Mumford-Shah minimizers: porosity, higher integrability and the Mumford-Shah conjecture. In Free discontinuity problems, edited by and . Edizioni della Normale Scuola Normale Superiore, Pisa (2016) 1–68 | MR | Zbl
,[19] An overview of the Mumford-Shah problem. Milan J. Math. 71 (2003) 95–119 | DOI | MR | Zbl
,[20] Flatness and finiteness in the Mumford-Shah problem. J. Math. Pures Appl. (9), 78 (1999) 431–459 | DOI | MR | Zbl
,[21] Concentration and flatness properties of the singular set of bisected balls. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 30 (2001) 623–659 | Numdam | MR | Zbl
and ,[22] Regularity properties of free discontinuity sets. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 18 (2001) 675–685 | DOI | Numdam | MR | Zbl
and ,[23] Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42 (1989) 577–685 | DOI | MR | Zbl
and ,[24] Höhere Integrierbarkeit für Fast-Minimierer des Mumford-Shah-Funktionals. Master Thesis. University Erlangen-Nuremberg (2016)
,[25] Big pieces of -graphs for minimizers of the Mumford-Shah functional. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 29 (2000) 329–349 | Numdam | MR | Zbl
,Cité par Sources :