Risk-averse optimal control of semilinear elliptic PDEs
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 53.

In this paper, we consider the optimal control of semilinear elliptic PDEs with random inputs. These problems are often nonconvex, infinite-dimensional stochastic optimization problems for which we employ risk measures to quantify the implicit uncertainty in the objective function. In contrast to previous works in uncertainty quantification and stochastic optimization, we provide a rigorous mathematical analysis demonstrating higher solution regularity (in stochastic state space), continuity and differentiability of the control-to-state map, and existence, regularity and continuity properties of the control-to-adjoint map. Our proofs make use of existing techniques from PDE-constrained optimization as well as concepts from the theory of measurable multifunctions. We illustrate our theoretical results with two numerical examples motivated by the optimal doping of semiconductor devices.

DOI : 10.1051/cocv/2019061
Classification : 49J20, 49J55, 49K20, 49K45, 90C15
Mots-clés : Risk-averse, PDE-constrained optimization, semilinear PDEs, uncertainty quantification, stochastic optimization, measurable multifunctions
@article{COCV_2020__26_1_A53_0,
     author = {Kouri, D.P. and Surowiec, T.M.},
     title = {Risk-averse optimal control of semilinear elliptic {PDEs}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019061},
     mrnumber = {4145243},
     zbl = {1448.49006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019061/}
}
TY  - JOUR
AU  - Kouri, D.P.
AU  - Surowiec, T.M.
TI  - Risk-averse optimal control of semilinear elliptic PDEs
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019061/
DO  - 10.1051/cocv/2019061
LA  - en
ID  - COCV_2020__26_1_A53_0
ER  - 
%0 Journal Article
%A Kouri, D.P.
%A Surowiec, T.M.
%T Risk-averse optimal control of semilinear elliptic PDEs
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019061/
%R 10.1051/cocv/2019061
%G en
%F COCV_2020__26_1_A53_0
Kouri, D.P.; Surowiec, T.M. Risk-averse optimal control of semilinear elliptic PDEs. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 53. doi : 10.1051/cocv/2019061. http://www.numdam.org/articles/10.1051/cocv/2019061/

[1] R.A. Adams and J.J.-F. Fournier, Sobolev Spaces, second ed. Elsevier, Amsterdam (2008). | MR | Zbl

[2] A. Alexanderian, N. Petra, G. Stadler and O. Ghattas, Mean-variance risk-averse optimal control of systems governed by PDEs with random parameter fields using quadratic approximations. SIAM/ASA J. Uncertain. Quantif . 5 (2017) 1166–1192. | DOI | MR | Zbl

[3] J. Appell and P.P. Zabrejko, Nonlinear Superposition Operators. Cambridge Tracts in Mathematics. Cambridge University Press (2008). | Zbl

[4] P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk. Math. Finance 9 (1999) 203–228. | DOI | MR | Zbl

[5] H. Attouch, G. Buttazzo and G. Michaille, Variational analysis in Sobolev and BV spaces, vol. 6 of MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2006). | MR | Zbl

[6] J.-P. Aubin and H. Frankowska, Set-valued analysis. Modern Birkhäuser Classics. Reprint of the 1990 edition [MR1048347]. Birkhäuser Boston, Inc., Boston, MA (2009). | MR | Zbl

[7] I. Babuška, R. Tempone and G.E. Zouraris, Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation. Comput. Methods Appl. Mech. Eng. 194 (2005) 1251–1294.

[8] V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics. Springer, New York (2010). | DOI | MR | Zbl

[9] P. Benner, S. Dolgov, A. Onwunta and M. Stoll, Low-rank solvers for unsteady Stokes-Brinkman optimal control problem with random data. Comput. Methods Appl. Mech. Eng. 304 (2016) 26–54. | DOI | MR | Zbl

[10] L. Bonfiglio, P. Perdikaris, S. Brizzolara and G. Karniadakis, A multi-fidelity framework for investigating the performance of super-cavitating hydrofoils under uncertain flow conditions. In 19th AIAA Non-Deterministic Approaches Conference. American Institute of Aeronautics and Astronautics (2017) 1–13.

[11] A. Borzì and G. Von Winckel, Multigrid methods and sparse-grid collocation techniques for parabolic optimal control problems with random coefficients. SIAM J. Sci. Comput. 31 (2009) 2172–2192. | DOI | MR | Zbl

[12] A. Borzì and G. Von Winckel, A POD framework to determine robust controls in PDE optimization. Comput. Vis. Sci. 14 (2011) 91–103. | DOI | MR | Zbl

[13] A. Borzì, V. Schulz, C. Schillings and G. Von Winckel, On the treatment of distributed uncertainties in PDE constrained optimization. GAMM Mitteilungen 33 (2010) 230–246. | DOI | MR | Zbl

[14] M. Burger and R. Pinnau, Fast optimal design of semiconductor devices. SIAM J. Appl. Math. 64 (2003) 108–126. | DOI | MR | Zbl

[15] M. Burger, H.W. Engl, P.W. Markowich and P. Pietra, Identification of doping profiles in semiconductor devices. Inverse Probl. 17 (2001) 1765–1795. | DOI | MR | Zbl

[16] M. Burger, M. Hinze and R. Pinnau, Optimization models for semiconductor dopant profiling. In Transport phenomena and kinetic theory. Modeling and Simulation in Science, Engineering and Technology Birkhäuser Boston, MA (2007) 91–115. | DOI | MR | Zbl

[17] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions. Springer Verlag Berlin, Heidelberg (1977). | DOI | MR | Zbl

[18] P. Chen and A. Quarteroni, Weighted reduced basis method for stochastic optimal control problems with elliptic PDE constraint. SIAM/ASA J. Uncert. Quantific. 2 (2014) 364–396. | DOI | MR | Zbl

[19] P. Chen, A. Quarteroni and G. Rozza, Stochastic optimal robin boundary control problems of advection-dominated elliptic equations. SIAM J. Numer. Anal. 51 (2013) 2700–2722. | DOI | MR | Zbl

[20] A. Chkifa, A. Cohen and C. Schwab, Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs. J.Math. Pures Appl. (9) 103 (2015) 400–428. | DOI | MR | Zbl

[21] A.R. Conn, N.I.M. Gould and P.L. Toint, Trust–Region Methods. SIAM, Philadelphia (2000). | DOI | MR | Zbl

[22] J.B. Conway, A Course in Functional Analysis. Graduate Texts in Mathematics. Springer New York (1985). | DOI | MR | Zbl

[23] L.J. Durlofsky and Y. Chen, Uncertainty Quantification for Subsurface Flow Problems Using Coarse-Scale Models. Springer Berlin Heidelberg, Berlin, Heidelberg (2012) 163–202. | MR | Zbl

[24] I. Ekeland and R. Temam, Convex Analysis and Variational Problems. Vol. 28 of Classics in Applied Mathematics. SIAM, Philadelphia (1999). | MR | Zbl

[25] M.S. Eldred, Design under uncertainty employing stochastic expansion methods. Int. J. Uncertain. Quanti. 1 (2011) 119–146. | DOI | MR | Zbl

[26] M.S. Eldred and B.J. Bichon, Second-order reliability formulations in DAKOTA/UQ. Proceedings of 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Newport, RI, May 1–4 AIAA-2006-1828.

[27] M.S. Eldred, H. Agarwal, V.M. Perez, S.F. Wojtkiewicz, Jr. and J.E. Renaud, Investigation of reliability method formulations in DAKOTA/UQ. Struct. Infrastruct. Eng.: Maint., Man., Life-Cycle Des. Perform. 3 (2007) 199–213. | DOI

[28] W. Fang and K. Ito, Identifiability of semiconductor defects from LBIC images. SIAM J. Appl. Math. 52 (1992) 1611–1626. | DOI | MR | Zbl

[29] W. Fang and K. Ito, Reconstruction of semiconductor doping profile from laser-beam-induced current image. SIAM J. Appl. Math. 54 (1994) 1067–1082. | DOI | MR | Zbl

[30] G.B. Folland, Real analysis. Modern techniques and their applications, second ed. Pure and Applied Mathematics (New York). John Wiley & Sons Inc., New York (1999). | MR | Zbl

[31] S. Garreis and M. Ulbrich, Constrained optimization with low-rank tensors and applications to parametric problems with PDEs. SIAM J. Sci. Comput. 39 (2017) A25–A54.

[32] R.G. Ghanem and P.D. Spanos, Stochastic finite elements: a spectral approach. Springer-Verlag, New York (1991). | MR | Zbl

[33] H. Goldberg, W. Kampowsky and F. Tröltzsch, On Neymtskij operators in Lp-spaces of abstract functions. Math. Nachrich. 155 (1992) 127–140. | DOI | MR | Zbl

[34] M. Hansen and C. Schwab, Analytic regularity and nonlinear approximation of a class of parametric semilinear elliptic PDEs. Math. Nachr. 286 (2013) 832–860. | DOI | MR | Zbl

[35] E. Hille and R.S. Phillips, Functional analysis and semi-groups. vol. 31 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (1957). | MR | Zbl

[36] M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE constraints, vol. 23 of Mathematical Modelling: Theory and Applications. Springer, New York (2009). | MR | Zbl

[37] M.J. Holst, Multilevel methods for the Poisson-Boltzmann equation. ProQuest LLC, Ann Arbor, MI, 1993. Ph.D. thesis, University of Illinois at Urbana-Champaign 1993. | MR

[38] D.P. Kouri, A multilevel stochastic collocation algorithm for optimization of PDEs with uncertain coefficients. SIAM/ASA J. Uncert. Quantif . 2 (2014) 55–81. | DOI | MR | Zbl

[39] D.P. Kouri and T.M. Surowiec, Risk-averse PDE-constrained optimization using the conditional value-at-risk. SIAM J. Optim. 26 (2016) 365–396. | DOI | MR | Zbl

[40] D.P. Kouri and T.M. Surowiec, Epi-regularization of risk measures for PDE-constrained optimization. Math. Oper. Res. 45 (2020) 403–795. | DOI | MR | Zbl

[41] D.P. Kouri and T.M. Surowiec, Existence and optimality conditions for risk-averse pde-constrained optimization. SIAM/ASA J. Uncert. Quantif . 6 (2018) 787–815. | DOI | MR | Zbl

[42] D.P. Kouri, M. Heinkenschloss, D. Ridzal and B.G. Van Bloemen Waanders, A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty. SIAM J. Sci. Comput. 35 (2013) A1847–A1879. | DOI | MR | Zbl

[43] D.P. Kouri, M. Heinkenschloss, D. Ridzal and B.G. Van Bloemen Waanders, Inexact objective function evaluations in a trust-region algorithm for PDE-constrained optimization under uncertainty. SIAM J. Sci. Comput. 36 (2014) A3011–A3029. | DOI | MR | Zbl

[44] O. Lass and S. Ulbrich, Model order reduction techniques with a posteriori error control for nonlinear robust optimization governed by partial differential equations. SIAM J. Sci. Comput. 39 (2017) S112–S139. | DOI | MR | Zbl

[45] P.D. Lax, Functional Analysis. John Wiley & Sons, New-York, Chicester, Brisbane, Toronto (2002). | Zbl

[46] J.-L. Lions, Optimal control of systems governed by partial differential equations. Translated from the French by S. K. Mitter. Die Grundlehren der mathematischen Wissenschaften, Band 170. Springer-Verlag, New York-Berlin (1971). | MR | Zbl

[47] M.C. Martin, S. Krumscheid and F. Nobile, Analysis of stochastic gradient methods for PDE-constrained optimal control problems with uncertain parameters. Available as Mathicse-Report nr 04.2018. Tech. rep., École Polytechnique Fédérale de Lausanne 2018.

[48] F. Nobile, R. Tempone and C.G. Webster, An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46 (2008) 2411–2442. | DOI | MR | Zbl

[49] N. Petra, H. Zhu, G. Stadler, T.J.R. Hughes and O. Ghattas, An inexact Gauss-Newton method for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice sheet model. J. Glaciol. 58 (2012) 211.

[50] D.A. Redfern, K. Ito and W. Fang, Parameter identification for semiconductor diodes by lbic imaging. SIAM J. Appl. Math. 62 (2002) 2149–2174. | DOI | MR | Zbl

[51] R.T. Rockafellar, Conjugate duality and optimization. Lectures given at the Johns Hopkins University, Baltimore, Md., June, 1973, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 16. Society for Industrial and Applied Mathematics, Philadelphia, PA (1974). | MR | Zbl

[52] R.T. Rockafellar and S. Uryasev, The fundamental risk quadrangle in risk management, optimization and statistical estimation. Surv. Oper. Res. Manag. Sci. 18 (2013) 33–53. | MR

[53] E. Rosseel and G.N. Wells, Optimal control with stochastic PDE constraints and uncertain controls. Comput. Methods Appl. Mech. Eng. 213 (2012) 152–167. | DOI | MR | Zbl

[54] H. Schramm and J. Zowe, A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2 (1992) 121–152. | DOI | MR | Zbl

[55] V. Schulz and C. Schillings, On the nature and treatment of uncertainties in aerodynamic design. AIAA J. 47 (2009) 646–654. | DOI

[56] A. Shapiro, D. Dentcheva and A. Ruszczynski, Lectures on Stochastic Programming: Modeling and Theory, Second Edition. MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2014). | MR | Zbl

[57] G. Stadler, M. Gurnis, C. Burstedde, L.C. Wilcox, L. Alisic and O. Ghattas, The dynamics of plate tectonics and mantle flow: from local to global scales. Science 329 (2010) 1033–1038. | DOI

[58] D.M. Tartakovsky, A. Guadagnini and M. Riva, Stochastic averaging of nonlinear flows in heterogeneous porous media. J. Fluid Mech. 492 (2003) 47–62. | DOI | MR | Zbl

[59] H. Tiesler, R.M. Kirby, D. Xiu and T. Preusser, Stochastic collocation for optimal control problems with stochastic PDE constraints. SIAM J. Control Optim. 50 (2012) 2659–2682. | DOI | MR | Zbl

[60] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, vol. 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010). | DOI | MR | Zbl

[61] M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. SIAM, Philadelphia (2011). | MR | Zbl

[62] D. Xiu and G.E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24 (2002) 619–644. | DOI | MR | Zbl

[63] E. Zeidler, Nonlinear functional analysis and its applications. I. Fixed-point theorems. Translated from the German by Peter R. Wadsack. Springer-Verlag, New York (1986). | MR | Zbl

[64] E. Zeidler and L. Boron, Nonlinear Functional Analysis and its Applications: II/B: Nonlinear Monotone Operators. Springer, New York (2013).

Cité par Sources :

DPK’s research was sponsored by DARPA EQUiPS grant SNL 014150709.

TMS’s research was sponsored by DFG grant no. SU 963/1-1 “Generalized Nash Equilibrium Problems with Partial Differential Operators: Theory, Algorithms, and Risk Aversion”.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.