On closed-loop equilibrium strategies for mean-field stochastic linear quadratic problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 41.

This article is concerned with linear quadratic optimal control problems of mean-field stochastic differential equations (MF-SDE) with deterministic coefficients. To treat the time inconsistency of the optimal control problems, linear closed-loop equilibrium strategies are introduced and characterized by variational approach. Our developed methodology drops the delicate convergence procedures in Yong [Trans. Amer. Math. Soc. 369 (2017) 5467–5523]. When the MF-SDE reduces to SDE, our Riccati system coincides with the analogue in Yong [Trans. Amer. Math. Soc. 369 (2017) 5467–5523]. However, these two systems are in general different from each other due to the conditional mean-field terms in the MF-SDE. Eventually, the comparisons with pre-committed optimal strategies, open-loop equilibrium strategies are given in details.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019057
Classification : 93E20, 49N10, 49N70
Mots-clés : Mean-field linear-quadratic optimal control problems, time inconsistency, closed-loop equilibrium strategies, Riccati system
@article{COCV_2020__26_1_A41_0,
     author = {Wang, Tianxiao},
     title = {On closed-loop equilibrium strategies for mean-field stochastic linear quadratic problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019057},
     mrnumber = {4117803},
     zbl = {1442.93048},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019057/}
}
TY  - JOUR
AU  - Wang, Tianxiao
TI  - On closed-loop equilibrium strategies for mean-field stochastic linear quadratic problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019057/
DO  - 10.1051/cocv/2019057
LA  - en
ID  - COCV_2020__26_1_A41_0
ER  - 
%0 Journal Article
%A Wang, Tianxiao
%T On closed-loop equilibrium strategies for mean-field stochastic linear quadratic problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019057/
%R 10.1051/cocv/2019057
%G en
%F COCV_2020__26_1_A41_0
Wang, Tianxiao. On closed-loop equilibrium strategies for mean-field stochastic linear quadratic problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 41. doi : 10.1051/cocv/2019057. http://www.numdam.org/articles/10.1051/cocv/2019057/

[1] D. Andersson and B. Djehiche, A maximum principle for SDEs of mean-field type. Appl. Math. Optim. 63 (2011) 341–356. | DOI | MR | Zbl

[2] J.M. Bismut, Linear quadratic optimal stochastic control with random coefficients. SIAM J. Control Optim. 14 (1976) 419–444. | DOI | MR | Zbl

[3] T. Björk, M. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time. Finance Stoch. 21 (2017) 331–360. | DOI | MR | Zbl

[4] R. Buckdahn, B. Djehiche, J. Li and S. Peng, Mean-field backward stochastic differential equations: a limit approach. Ann. Probab. 37 (2009) 1524–1565. | DOI | MR | Zbl

[5] R. Buckdahn, B. Djehiche and J. Li, A general maximum principle for SDEs of mean-field type. Appl. Math. Optim. 64 (2011) 197–216. | DOI | MR | Zbl

[6] R. Buckdahn, J. Li, S. Peng and C. Rainer, Mean-field stochastic differential equations and associated PDEs. Ann. Probab. 45 (2017) 824–878. | DOI | MR | Zbl

[7] R. Carmona, F. Delarue and A. Lachapelle, Control of McKean-Vlasov versus mean field games. Math. Fin. Econ. 7 (2013) 131–166. | DOI | MR | Zbl

[8] S. Chen, X. Li and X. Zhou, Stochastic linear quadratic regulators with indefinite control weight costs. SIAM J. Control Optim. 36 (1998) 1685–1702. | DOI | MR | Zbl

[9] D. Dawson, Critical dynamics and fluctuations for a mean-field model of cooperative behavior. J. Statist. Phys. 31 (1983) 29–85. | DOI | MR

[10] Y. Hu, H. Jin and X. Zhou, Time-inconsistent stochastic linear-quadratic control. SIAM J. Control Optim. 50 (2012) 1548–1572. | DOI | MR | Zbl

[11] Y. Hu, H. Jin and X. Zhou, Time-inconsistent stochastic linear-quadratic control: characterization and uniqueness of equilibrium. SIAM J. Control Optim. 55 (2017) 1261–1279. | DOI | MR | Zbl

[12] M. Huang, R. Malhame and P. Caines, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 (2006) 221–252. | DOI | MR | Zbl

[13] M. Kac, Foundations of kinetic theory, in Proceedings of the 3rd Berkeley symposium on mathematical statistics and probability, Vol. 3 University of California Press, California (1956) 171–197. | MR | Zbl

[14] X. Li, J. Sun and J. Yong, Mean-field stochastic linear quadratic optimal control problems: closed-loop solvability. Prob. Uncer. Quan Risk 1 (2016) 2. | DOI | MR | Zbl

[15] H. Mckean, A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci. USA 56 (1966) 1907–1911. | DOI | MR | Zbl

[16] T. Meyer-Brandis, B. Øksendal and X. Zhou, A mean-field stochastic maximum principle via Malliavin calculus. Stochastics 84 (2012) 643–666. | DOI | MR | Zbl

[17] S. Tang, General linear quadratic optimal stochastic control problems with random coefficients: linear stochastic Hamilton systems and backward stochastic Riccati equations. SIAM J. Control Optim. 42 (2003) 53–75. | DOI | MR | Zbl

[18] T. Wang, Equilibrium controls in time inconsistent stochastic linear quadratic problems. Appl. Math. Optim. 81 (2020) 591–619. | DOI | MR | Zbl

[19] T. Wang, Characterizations of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problems. I. Math. Control Relat. Field 9 (2019) 385–409. | DOI | MR | Zbl

[20] W. Wonham, On a matrix Riccati equation of stochastic control. SIAM J. Control 6 (1968) 681–697. | DOI | MR | Zbl

[21] Q. Wei, J. Yong and Z. Yu, Time-inconsistent recursive stochastic optimal control problems. SIAM J. Control Optim. 55 (2017) 4156–4201. | DOI | MR | Zbl

[22] J. Yong, Time-inconsistent optimal control problem and the equilibrium HJB equation. Math. Control Related Fields 2 (2012) 271–329. | DOI | MR | Zbl

[23] J. Yong, A linear-quadratic optimal control problem for mean-field stochastic differential equations. SIAM J. Control Optim. 51 (2013) 2809–2838. | DOI | MR | Zbl

[24] J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations – time-consistent solutions. Trans. Amer. Math. Soc. 369 (2017) 5467–5523. | DOI | MR | Zbl

[25] J. Yong and X. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag, New York (1999). | DOI | MR | Zbl

Cité par Sources :

This work is supported in part by NSF of China (Grant 11401404, 11471231, 11231007) and the Fundamental Research Funds for the central Universities (YJ201605).