Asymptotic behavior of the W 1 / q , q -norm of mollified B V functions and applications to singular perturbation problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 77.

Motivated by results of Figalli and Jerison [J. Funct. Anal. 266 (2014) 1685–1701] and Hernández [Pure Appl. Funct. Anal., Preprint https://arxiv.org/abs/1709.08262 (2017)], we prove the following formula:

$$

where Ω ⊂ ℝ$$ is a regular domain, uBV (Ω) ∩ L$$(Ω), q > 1 and η$$(z) = ε$$η(zε) is a smooth mollifier. In addition, we apply the above formula to the study of certain singular perturbation problems.

DOI : 10.1051/cocv/2019051
Classification : 46E35
Mots-clés : Function of bounded variations, mollifier, fractional Sobolev norm, singular perturbation functional
@article{COCV_2020__26_1_A77_0,
     author = {Poliakovsky, Arkady},
     title = {Asymptotic behavior of the $W^{1 / q,q}$\protect\emph{}-norm of mollified $BV$\protect\emph{} functions and applications to singular perturbation problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019051},
     mrnumber = {4156826},
     zbl = {1471.46034},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019051/}
}
TY  - JOUR
AU  - Poliakovsky, Arkady
TI  - Asymptotic behavior of the $W^{1 / q,q}$-norm of mollified $BV$ functions and applications to singular perturbation problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019051/
DO  - 10.1051/cocv/2019051
LA  - en
ID  - COCV_2020__26_1_A77_0
ER  - 
%0 Journal Article
%A Poliakovsky, Arkady
%T Asymptotic behavior of the $W^{1 / q,q}$-norm of mollified $BV$ functions and applications to singular perturbation problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019051/
%R 10.1051/cocv/2019051
%G en
%F COCV_2020__26_1_A77_0
Poliakovsky, Arkady. Asymptotic behavior of the $W^{1 / q,q}$-norm of mollified $BV$ functions and applications to singular perturbation problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 77. doi : 10.1051/cocv/2019051. http://www.numdam.org/articles/10.1051/cocv/2019051/

[1] G. Alberti, G. Bouchitté and P. Seppecher, Un résultat de perturbations singulières avec la norme H 1 / 2 . C. R. Acad. Sci. Paris 319 (1994) 333–338. | MR | Zbl

[2] L. Ambrosio, Metric space valued functions of bounded variation. Ann. Sc. Norm. Super Pisa Cl. Sci. 17 (1990) 439–478. | Numdam | MR | Zbl

[3] L. Ambrosio, C. De Lellis and C. Mantegazza, Line energies for gradient vector fields in the plane. Calc. Var. Partial Differ. Equ. 9 (1999) 327–355. | DOI | MR | Zbl

[4] L. Ambrosio, G. De Philippis and L. Martinazzi, Gamma-convergence of nonlocal perimeter functionals. Manuscripta Math. 134 (2010) 377–403. | DOI | MR | Zbl

[5] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press, New York (2000). | MR | Zbl

[6] P. Aviles and Y. Giga, A mathematical problem related to the physical theory of liquid crystal configurations. Proc. Centre Math. Anal. Austral. Nat. Univ. 12 (1987) 1–16. | MR

[7] P. Aviles and Y. Giga, On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields. Proc. R. Soc. Edinb. Sect. A 129 (1999) 1–17. | DOI | MR | Zbl

[8] J. Bourgain, H. Brezis and P. Mironescu, Another Look at Sobolev Spaces. Optimal Control and Partial Differential Equations, edited by J.L. Menaldi, et al., A volume in honour of A. Benssoussan’s 60th birthday. IOS Press, Bristol (2001) 439–455. | MR | Zbl

[9] L. Caffarelli and E. Valdinoci, Regularity properties of nonlocal minimal surfaces via limiting arguments. Adv. Math. 248 (2013) 843–871. | DOI | MR | Zbl

[10] J. Dávila, On an open question about functions of bounded variation. Calc. Var. Partial Differ. Equ. 15 (2002) 519–527. | DOI | MR | Zbl

[11] S. Dipierro, F. Maggi and E. Valdinoci, Asymptotic expansions of the contact angle in nonlocal capillarity problems. J. Nonlinear Sci. 27 (2017) 1531–1550. | DOI | MR | Zbl

[12] A. Figalli and D. Jerison, How to recognize convexity of a set from its marginals. J. Funct. Anal. 266 (2014) 1685–1701. | DOI | MR | Zbl

[13] F. Hernández, Properties of a Hilbertian Norm for Perimeter. Preprint (2017). | arXiv | MR

[14] L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98 (1987) 123–142. | DOI | MR | Zbl

[15] L. Modica and S. Mortola, Un esempio di Γ - -convergenza. Boll. Un. Mat. Ital. B 14 (1977) 285–299. | MR | Zbl

[16] L. Modica and S. Mortola, Il limite nella Γ -convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A 14 (1977) 526–529. | MR | Zbl

[17] G. Palatucci, O. Savin and E. Valdinoci, Local and global minimizers for a variational energy involving a fractional norm. Ann. Mat.Pura Appl. 192 (2013) 673–718. | DOI | MR | Zbl

[18] A. Poliakovsky, Upper bounds for singular perturbation problems involving gradient fields. J. Eur. Math. Soc. 9 (2007) 1–43. | DOI | MR | Zbl

[19] A. Poliakovsky, Jump detection in Besov spaces via a new BBM formula. Applications to Aviles-Giga type functionals. Commun. Contemp. Math. 20 (2018) 1750096. | DOI | MR | Zbl

[20] A. Ponce, A new approach to Sobolev spaces and connections to Gamma-convergence. Calc. Var. Partial Differ. Equ. 19 (2004) 229–255. | DOI | MR | Zbl

[21] O. Savin and E. Valdinoci, Γ -convergence for nonlocal phase transitions. Ann. Inst. Henri Poincaré Anal. Non Linéaire 29 (2012) 479–500. | DOI | Numdam | MR | Zbl

[22] P. Sternberg, The effect of a singular perturbation on nonconvex variational problems. Arch. Ration. Mech. Anal. 101 (1988) 209–260. | DOI | MR | Zbl

Cité par Sources :