In this paper, we consider the asymptotic stability of the exact boundary controllability of nodal profile for quasilinear hyperbolic systems. We will prove that if the nodal profile and the given boundary function possess an exponential or polynomial decaying property, then the boundary control function and the solution to the corresponding mixed initial-boundary value problem will possess the same decaying property.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019050
Mots-clés : Quasilinear hyperbolic system, exact boundary controllability of nodal profile, classical solutions, asymptotic stability
@article{COCV_2020__26_1_A67_0, author = {Wang, Libin and Wang, Ke}, title = {Asymptotic stability of the exact boundary controllability of nodal profile for quasilinear hyperbolic systems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {26}, year = {2020}, doi = {10.1051/cocv/2019050}, mrnumber = {4151426}, zbl = {1450.35070}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2019050/} }
TY - JOUR AU - Wang, Libin AU - Wang, Ke TI - Asymptotic stability of the exact boundary controllability of nodal profile for quasilinear hyperbolic systems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2020 VL - 26 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2019050/ DO - 10.1051/cocv/2019050 LA - en ID - COCV_2020__26_1_A67_0 ER -
%0 Journal Article %A Wang, Libin %A Wang, Ke %T Asymptotic stability of the exact boundary controllability of nodal profile for quasilinear hyperbolic systems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2020 %V 26 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2019050/ %R 10.1051/cocv/2019050 %G en %F COCV_2020__26_1_A67_0
Wang, Libin; Wang, Ke. Asymptotic stability of the exact boundary controllability of nodal profile for quasilinear hyperbolic systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 67. doi : 10.1051/cocv/2019050. http://www.numdam.org/articles/10.1051/cocv/2019050/
[1] Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et l’introduction des marées dans leur lit. C. R. Acad. Sci. 73 (1871) 147–154, 237–240. | JFM
,[2] Exact boundary controllability of nodal profile for quasilinear hyperbolic systems in a tree-like network. Math. Methods Appl. Sci. 34 (2011) 911–928. | DOI | MR | Zbl
and ,[3] Exact boundary controllability of nodal profile for unsteady flows on a tree-like network of open canals. J. Math. Pures Appl. 99 (2013) 86–105. | DOI | MR | Zbl
and ,[4] Global boundary controllability of the de St. Venant equations between steady states. Ann. Inst. Henri Poincar C 20 (2003) 1–11. | DOI | Numdam | MR | Zbl
and ,[5] Global boundary controllability of the Saint-Venant system for sloped canals with friction. Ann. Inst. Henri Poincaré C 26 (2009) 257–270. | DOI | Numdam | MR | Zbl
and ,[6] Flow control in gas networks: exact controllability to a given demand. Math. Methods Appl. Sci. 34 (2011) 745–757. | DOI | MR | Zbl
, and ,[7] Global Classical Solutions for Quasilinear Hyperbolic Systems. Vol. 32 of Research in Applied Mathematics. Wiley/Masson, New York (1994). | MR | Zbl
,[8] Controllability and Observability for Quasilinear Hyperbolic Systems, in Vol. 3 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences & Higher Education Press (2010). | MR | Zbl
,[9] Exact boundary controllability of nodal profile for quasilinear hyperbolic systems. Math. Methods Appl. Sci. 33 (2010) 2101–2106. | DOI | MR | Zbl
,[10] Global exact boundary controllability for first order quasilinear hyperbolic systems. Discr. Continu. Dyn. Syst. B 14 (2010) 1419–1432. | MR | Zbl
,[11] Semi-global C1 solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems. Chin. Ann. Math. B 22 (2001) 325–336. | DOI | MR | Zbl
and ,[12] Local exact boundary controllability for a class of quasilinear hyperbolic systems. Chin. Ann. Math. B 23 (2002) 209–218. | DOI | MR | Zbl
and ,[13] Exact boundary controllability for quasilinear hyperbolic systems. SIAM J. Control Optim. 41 (2003) 1748–1755. | DOI | MR | Zbl
and ,[14] Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems. Chin. Ann. Math. B 31 (2010) 723–742. | DOI | MR | Zbl
and ,[15] Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discr. Continu. Dyn. Syst. B 12 (2005) 59–78. | DOI | MR | Zbl
and ,[16] Global Propagation of Regular Nonlinear Hyperbolic Waves. Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Springer (2009). | MR | Zbl
and ,[17] Global exact boundary controllability for first order quasilinear hyperbolic systems of diagonal form. Int. J. Dyn. Syst. Differ. Equ. 1 (2007) 12–19. | MR | Zbl
and ,[18] Boundary Value Problems for Quasilinear Hyperbolic Systems. Duke University Mathematics Series V (1985). | MR | Zbl
and ,[19] Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems. SpringerBriefs in Mathematics. Springer, Singapore (2016). | MR | Zbl
, and ,[20] Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems. Commun. Partial Differ. Equ. 19 (1994) 1263–1317. | DOI | MR | Zbl
, and ,[21] Global exact boundary controllability for general first-order quasilinear hyperbolic systems. Chin. Ann. Math. B 36 (2015) 895–906. | DOI | MR | Zbl
and ,Cité par Sources :
Supported by the National Natural Science Foundation of China (Nos. 11831011, 11771091, 11601074 and 11671075).