On a two-phase Serrin-type problem and its numerical computation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 65.

We consider an overdetermined problem of Serrin-type with respect to an operator in divergence form with piecewise constant coefficients. We give sufficient condition for unique solvability near radially symmetric configurations by means of a perturbation argument relying on shape derivatives and the implicit function theorem. This problem is also treated numerically, by means of a steepest descent algorithm based on a Kohn–Vogelius functional.

DOI : 10.1051/cocv/2019048
Classification : 35N25, 35J15, 35Q93, 65K10
Mots-clés : Two-phase, overdetermined problem, Serrin problem, shape derivative, implicit function theorem, Kohn–Vogelius functional, augmented Lagrangian
@article{COCV_2020__26_1_A65_0,
     author = {Cavallina, Lorenzo and Yachimura, Toshiaki},
     title = {On a two-phase {Serrin-type} problem and its numerical computation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019048},
     mrnumber = {4151427},
     zbl = {1450.35189},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019048/}
}
TY  - JOUR
AU  - Cavallina, Lorenzo
AU  - Yachimura, Toshiaki
TI  - On a two-phase Serrin-type problem and its numerical computation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019048/
DO  - 10.1051/cocv/2019048
LA  - en
ID  - COCV_2020__26_1_A65_0
ER  - 
%0 Journal Article
%A Cavallina, Lorenzo
%A Yachimura, Toshiaki
%T On a two-phase Serrin-type problem and its numerical computation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019048/
%R 10.1051/cocv/2019048
%G en
%F COCV_2020__26_1_A65_0
Cavallina, Lorenzo; Yachimura, Toshiaki. On a two-phase Serrin-type problem and its numerical computation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 65. doi : 10.1051/cocv/2019048. http://www.numdam.org/articles/10.1051/cocv/2019048/

[1] R. Adams and J. Fournier, Sobolev spaces. Second edition. Vol. 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/ Press, Amsterdam (2003). | MR | Zbl

[2] A.D. Alexandrov, Uniqueness theorems for surfaces in the large V. Vestnik Leningrad Univ. 13 (1958) 5–8. [English translation: Trans. Am. Math. Soc. 21 (1962) 412–415]. | MR | Zbl

[3] G. Allaire and O. Pantz, Structural optimization with freefem++. Struct. Multidisc. Optim. 32 (2006) 173–181. | DOI | MR | Zbl

[4] H.W. Alt and L.A. Caffarelli, Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325 (1981) 105–144. | MR | Zbl

[5] A. Ben Abda, F. Bouchon, G.H. Peichl, M. Sayeh and R. Touzani, A Dirichlet–Neumann cost functional approach for the Bernoulli problem. J. Eng. Math. 81 (2013) 157–176. | DOI | MR | Zbl

[6] A. Beurling, On free boundary problems for the Laplace equation, Seminars on analytic functions I, Institute Advanced Studies Seminars Princeton (1957) 248–263. Collected works of Arne Beurling I. Birkhäuser, Boston (1989) 250–265. | Zbl

[7] C. Bianchini, A. Henrot and P. Salani, An overdetermined problem with non-constant boundary condition. Interfaces Free Bound. 16 (2014) 215–241. | DOI | MR | Zbl

[8] F. Bouchon, S. Clain and R. Touzani, Numerical solution of the free boundary Bernoulli problem using a level set formulation. Comput. Methods Appl. Mech. Eng. 194 (2005) 3934–3948. | DOI | MR | Zbl

[9] F. Bouchon, G.H. Peichl, M. Sayeh and R. Touzani, A free boundary problem for the Stokes equations. ESAIM: COCV 23 (2017) 195–215. | Numdam | MR | Zbl

[10] B. Brandolini, C. Nitsch, P. Salani and C. Trombetti, On the stability of the Serrin problem. J. Diff. Equ. 245 (2008) 1566–1583. | DOI | MR | Zbl

[11] L. Cavallina, Stability analysis of the two-phase torsional rigidity near a radial configuration. Appl. Anal. 98 (2019) 1889–1900. | DOI | MR | Zbl

[12] L. Cavallina, Analysis of two-phase shape optimization problems by means of shape derivatives. Doctoral dissertation, Tohoku University, Sendai, Japan. Preprint (2018). | arXiv

[13] L. Cavallina, R. Magnanini and S. Sakaguchi, Two-phase heat conductors with a surface of the constant flow property. To appear in: J. Geom. Anal. (2019). Available from: . | DOI | MR | Zbl

[14] C. Conca, R. Mahadevan and L. Sanz, An extremal eigenvalue problem for a two-phase conductor in a ball. Appl. Math. Optim. 60 (2009) 173–184. | DOI | MR | Zbl

[15] C. Conca, A. Laurain and R. Mahadevan, Minimization of the ground state for two phase conductors in low contrast regime. SIAM J. Appl. Math. 72 (2012) 1238–1259. | DOI | MR | Zbl

[16] C. Dapogny, P. Frey, F. Omnès and Y. Privat, Geometrical shape optimization in fluid mechanics using Freefem++. Struct. Multidisc. Optim. 58 (2018) 2761–2788. | DOI | MR

[17] S. Cox and R. Lipton, Extremal eigenvalue problems for two-phase conductors. Arch. Ratl. Mech. Anal. 136 (1996) 101–117. | DOI | MR | Zbl

[18] F. De Gournay, Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J. Control Optim. 45 (2006) 343–367. | DOI | MR | Zbl

[19] M.C. Delfour and Z.P. Zolésio, Shapes and Geometries: Analysis Differential Calculus, and Optimization. SIAM, Philadelphia (2001). | MR | Zbl

[20] K. Eppler and H. Harbrecht, On a Kohn–Vogelius like formulation of free boundary problems. Comput. Optim. Appl. 52 (2012) 69–85. | DOI | MR | Zbl

[21] M. Flucher and M. Rumpf, Bernoulli’s free boundary problem, qualitative theory and numerical approximation. J. Reine Angew. Math. 486 (1997) 165–204. | MR | Zbl

[22] P. Frey and P.L. George, Mesh generation, application to Finite Elements. Wiley & Sons (2008). | DOI | MR | Zbl

[23] J. Haslinger, K. Ito, T. Kozubek, K. Kunisch and G. Peichl, On the shape derivative for problems of Bernoulli type. Interfaces Free Bound. 11 (2009) 317–330. | DOI | MR | Zbl

[24] F. Hecht, New development in freefem++. J. Numer. Math. 20 (2012) 251–265. | DOI | MR | Zbl

[25] A. Henrot and M. Pierre, Shape variation and optimization (a geometrical analysis). Vol. 28 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich (2018). | MR | Zbl

[26] A. Henrot and H. Shahgholian, The one phase free boundary problem for the p -Laplacian with non-constant Bernoulli boundary condition. Trans. Am. Math. Soc. 354 (2002) 2399–2416. | DOI | MR | Zbl

[27] K. Ito, K. Kunisch and G.H. Peichl, Variational approach to shape derivatives for a class of Bernoulli problems. J. Math. Anal. Appl. 314 (2006) 126–149. | DOI | MR | Zbl

[28] H. Kasumba, K. Kunisch and A. Laurain, A bilevel shape optimization problem for the exterior Bernoulli free boundary value problem. Interfaces Free Bound. 16 (2014) 459–487. | DOI | MR | Zbl

[29] R.V. Kohn and M. Vogelius, Relaxation of a Variational Method for Impedance Computed Tomography. Commun. Pure Appl. Math. 40 (1987) 745–777. | DOI | MR | Zbl

[30] A. Laurain, Global minimizer of the ground state for two phase conductors in low contrast regime. ESAIM: COCV 20 (2014) 362–388. | Numdam | MR | Zbl

[31] A. Laurain and Y. Privat, On a Bernoulli problem with geometric constraints. ESAIM: COCV 18 (2012) 157–180. | Numdam | MR | Zbl

[32] A. Laurain and S.W. Walker, Droplet footprint control. SIAM J. Control Optim. 53 (2015) 771–799. | DOI | MR | Zbl

[33] R. Magnanini and G. Poggesi, Serrin’s problem and Alexandrov’s Soap Bubble Theorem: stability via integral identities. Preprint (2017). To appear in: Indiana Univ. Math. J. 2020. | arXiv | MR

[34] F. Murat and L. Tartar, On the control of coefficients in partial differential equations. In Topics in the mathematical modelling of composite materials. In Vol. 31 of Progr. Nonlinear Differential Equations Appl. Birkhäuser Boston, Boston, MA (1997) 1–8. | MR | Zbl

[35] F. Murat and L. Tartar, Calculus of variations and homogenization. In Topics in the mathematical modelling of composite materials. Vol. 31 of Progr. Nonlinear Differential Equations Appl. Birkhäuser Boston, Boston, MA (1997) 139–173. | MR | Zbl

[36] L. Nirenberg, Topics in Nonlinear Functional Analysis, Revised reprint ofthe 1974 original. In Vol. 6 of Courant Lecture Notes in Mathematics. American Mathematical Society, Providence, RI (2001). | DOI | MR | Zbl

[37] C. Nitsch and C. Trombetti, The classical overdetermined Serrin problem. Complex Variables Elliptic Equ. 63 (2018) 1107–1122. | DOI | MR | Zbl

[38] J. Nocedal and S. Wright, Numerical Optimization. Springer (2006). | MR | Zbl

[39] J. Serrin, A symmetry problem in potential theory. Arch. Rat. Mech. Anal. 43 (1971) 304–318. | DOI | MR | Zbl

[40] J. Sokolowski and J.P. Zolesio, Introduction to Shape Optimization: Shape Sensitivity Analysis. In Vol. 10 of Springer Series in Computational Mathematics. Springer–Verlag, Berlin (1992). | MR | Zbl

Cité par Sources :

This research was partially supported by the Challenging Exploratory Research No.16K13768 of Japan Society for the Promotion of Science and the Grant-in-Aid for JSPS Fellows No. 18J11430 and No. 19J12344.