We study hypersurfaces with fractional mean curvature in N-dimensional Euclidean space. These hypersurfaces are critical points of the fractional perimeter under a volume constraint. We use local inversion arguments to prove existence of smooth branches of multiply-periodic hypersurfaces bifurcating from suitable parallel hyperplanes.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019047
Mots-clés : Fractional perimeter, non local mean curvature, bifurcation
@article{COCV_2020__26_1_A10_0, author = {Minlend, Ignace Aristide and Niang, Alassane and Thiam, El hadji Abdoulaye}, title = {Multiply-periodic hypersurfaces with constant nonlocal mean curvature}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {26}, year = {2020}, doi = {10.1051/cocv/2019047}, mrnumber = {4064471}, zbl = {1439.53005}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2019047/} }
TY - JOUR AU - Minlend, Ignace Aristide AU - Niang, Alassane AU - Thiam, El hadji Abdoulaye TI - Multiply-periodic hypersurfaces with constant nonlocal mean curvature JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2020 VL - 26 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2019047/ DO - 10.1051/cocv/2019047 LA - en ID - COCV_2020__26_1_A10_0 ER -
%0 Journal Article %A Minlend, Ignace Aristide %A Niang, Alassane %A Thiam, El hadji Abdoulaye %T Multiply-periodic hypersurfaces with constant nonlocal mean curvature %J ESAIM: Control, Optimisation and Calculus of Variations %D 2020 %V 26 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2019047/ %R 10.1051/cocv/2019047 %G en %F COCV_2020__26_1_A10_0
Minlend, Ignace Aristide; Niang, Alassane; Thiam, El hadji Abdoulaye. Multiply-periodic hypersurfaces with constant nonlocal mean curvature. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 10. doi : 10.1051/cocv/2019047. http://www.numdam.org/articles/10.1051/cocv/2019047/
[1] A notion of nonlocal curvature. Numer. Funct. Anal. Optim. 35 (2014) 793–815. | DOI | MR | Zbl
and ,[2] Gamma-convergence of nonlocal perimeter functionals. Manuscripta Math. 134 (2011) 377–403. | DOI | MR | Zbl
, and ,[3] Delaunay hypersurfaces with constant nonlocal mean curvature. J. Mathématiques Pures et Appliquées 110 (2018) 32–70. | DOI | MR | Zbl
, and ,[4] Curves and surfaces with constant nonlocal mean curvature: meeting Alexandrov and Delaunay. To appear in J. Reine Angew. Math. DOI: . | DOI | MR | Zbl
, , and ,[5]] [ Near-sphere lattices with constant nonlocal mean curvature. Math. Ann. 370 (2018) 1513–1569. | DOI | MR | Zbl
, and ,[6] Nonlocal minimal surfaces. Commun. Pure Appl. Math. 63 (2010) 1111–1144. | DOI | MR | Zbl
, and ,[7] Convergence of nonlocal threshold dynamics approximations to front propagation. Arch. Ration. Mech. Anal. 195 (2010) 1–23. | DOI | MR | Zbl
and ,[8] Rigidity and sharp stability estimates for hypersurfaces with constant and almost-constant nonlocal mean curvature. To appear in J. Reine Angew. Math. DOI: . | DOI | MR | Zbl
, , and ,[9] Bifurcation, perturbation of simple eigenvalues, and linearized stability. Arch. Ration. Mech. Anal. (52) 2 (1973) 161–180. | DOI | MR | Zbl
and ,[10] Bifurcation from simple eigenvalues. J. Funct. Anal. 8 (1971) 321–340. | DOI | MR | Zbl
and ,[11] Nonlocal minimal Lawson cones. arXiv preprint . | arXiv | MR | Zbl
, and ,[12] Nonlocal s-minimal surfaces and Lawson cones. J. Differ. Geometry 109 (2018) 111–175. | DOI | MR | Zbl
, and ,[13] Nonlocal delaunay surfaces. Nonlinear Anal. 137 (2016) 357–380. | DOI | MR | Zbl
, , and ,[14] Sur la surface de révolution dont la courbure moyenne est constante. J. Math. Pures Appl. 1ère. série 6 (1841) 309–315.
,[15] Periodic patterns for a model involving short-range and long-range, . | arXiv
,[16] Regularity estimates for nonlocal Schrödinger equations. | arXiv | Zbl
,[17] Unbounded periodic solutions to Serrin’s overdetermined boundary value problem. Arch. Ration. Mech. Anal. 233 (2017) 737–759. | DOI | MR | Zbl
, and ,[18] Isoperimetry and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 336 (2015) 441–507. | DOI | MR | Zbl
, , , and ,[19] Table of intregrals, series and products; seventh edition (2014). | MR | Zbl
and ,[20] The Curious History of Faá di Bruno’s Formula. Am. Math. Monthly 109 (2002) 217–227. | MR | Zbl
,[21] Regularity of nonlocal minimal cones in dimension 2. Calc. Var. Partial Differ. Equ. 48 (2013) 33–39. | DOI | MR | Zbl
, ,[22] Bifurcating extremal domains for the first eigenvalue of the Laplacian. Adv. Math. 229 (2012) 602–632. | DOI | MR | Zbl
and ,[23] New extremal domains for the first eigenvalue of the Laplacian in flat tori. Calc. Var. PDEs 37 (2010) 329–344. | DOI | MR | Zbl
,[24] Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60 (2007) 67–112. | DOI | MR | Zbl
,Cité par Sources :