Multiply-periodic hypersurfaces with constant nonlocal mean curvature
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 10.

We study hypersurfaces with fractional mean curvature in N-dimensional Euclidean space. These hypersurfaces are critical points of the fractional perimeter under a volume constraint. We use local inversion arguments to prove existence of smooth branches of multiply-periodic hypersurfaces bifurcating from suitable parallel hyperplanes.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019047
Classification : 47G20, 53A10, 35B10
Mots-clés : Fractional perimeter, non local mean curvature, bifurcation
@article{COCV_2020__26_1_A10_0,
     author = {Minlend, Ignace Aristide and Niang, Alassane and Thiam, El hadji Abdoulaye},
     title = {Multiply-periodic hypersurfaces with constant nonlocal mean curvature},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019047},
     mrnumber = {4064471},
     zbl = {1439.53005},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019047/}
}
TY  - JOUR
AU  - Minlend, Ignace Aristide
AU  - Niang, Alassane
AU  - Thiam, El hadji Abdoulaye
TI  - Multiply-periodic hypersurfaces with constant nonlocal mean curvature
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019047/
DO  - 10.1051/cocv/2019047
LA  - en
ID  - COCV_2020__26_1_A10_0
ER  - 
%0 Journal Article
%A Minlend, Ignace Aristide
%A Niang, Alassane
%A Thiam, El hadji Abdoulaye
%T Multiply-periodic hypersurfaces with constant nonlocal mean curvature
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019047/
%R 10.1051/cocv/2019047
%G en
%F COCV_2020__26_1_A10_0
Minlend, Ignace Aristide; Niang, Alassane; Thiam, El hadji Abdoulaye. Multiply-periodic hypersurfaces with constant nonlocal mean curvature. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 10. doi : 10.1051/cocv/2019047. http://www.numdam.org/articles/10.1051/cocv/2019047/

[1] N. Abatangelo and E. Valdinoci, A notion of nonlocal curvature. Numer. Funct. Anal. Optim. 35 (2014) 793–815. | DOI | MR | Zbl

[2] L. Ambrosio, G. De Philippis and L. Martinazzi, Gamma-convergence of nonlocal perimeter functionals. Manuscripta Math. 134 (2011) 377–403. | DOI | MR | Zbl

[3] X. Cabré, M.M. Fall and T. Weth, Delaunay hypersurfaces with constant nonlocal mean curvature. J. Mathématiques Pures et Appliquées 110 (2018) 32–70. | DOI | MR | Zbl

[4] X. Cabré, M.M. Fall, J. Solà-Morales and T. Weth, Curves and surfaces with constant nonlocal mean curvature: meeting Alexandrov and Delaunay. To appear in J. Reine Angew. Math. DOI: . | DOI | MR | Zbl

[5]] [ X. Cabré, M.M. Fall and T. Weth, Near-sphere lattices with constant nonlocal mean curvature. Math. Ann. 370 (2018) 1513–1569. | DOI | MR | Zbl

[6] L. Caffarelli, J.-M. Roquejoffre and O. Savin, Nonlocal minimal surfaces. Commun. Pure Appl. Math. 63 (2010) 1111–1144. | DOI | MR | Zbl

[7] L. Caffarelli and P.E. Souganidis, Convergence of nonlocal threshold dynamics approximations to front propagation. Arch. Ration. Mech. Anal. 195 (2010) 1–23. | DOI | MR | Zbl

[8] G. Ciraolo, A. Figalli, F. Maggi and M. Novaga, Rigidity and sharp stability estimates for hypersurfaces with constant and almost-constant nonlocal mean curvature. To appear in J. Reine Angew. Math. DOI: . | DOI | MR | Zbl

[9] M. Crandall and P. Rabinowitz, Bifurcation, perturbation of simple eigenvalues, and linearized stability. Arch. Ration. Mech. Anal. (52) 2 (1973) 161–180. | DOI | MR | Zbl

[10] M.G. Crandall and P.H. Rabinowitz, Bifurcation from simple eigenvalues. J. Funct. Anal. 8 (1971) 321–340. | DOI | MR | Zbl

[11] J. Dávila, M. Del Pino and J. Wei, Nonlocal minimal Lawson cones. arXiv preprint . | arXiv | MR | Zbl

[12] J. Dávila, M. Del Pino and J. Wei, Nonlocal s-minimal surfaces and Lawson cones. J. Differ. Geometry 109 (2018) 111–175. | DOI | MR | Zbl

[13] J. Dávila, M. Del Pino, S. Dipierro and E. Valdinoci, Nonlocal delaunay surfaces. Nonlinear Anal. 137 (2016) 357–380. | DOI | MR | Zbl

[14] Ch. Delaunay, Sur la surface de révolution dont la courbure moyenne est constante. J. Math. Pures Appl. 1ère. série 6 (1841) 309–315.

[15] M.M. Fall, Periodic patterns for a model involving short-range and long-range, . | arXiv

[16] M.M. Fall, Regularity estimates for nonlocal Schrödinger equations. | arXiv | Zbl

[17] M.M. Fall, I.A. Minlend and T. Weth, Unbounded periodic solutions to Serrin’s overdetermined boundary value problem. Arch. Ration. Mech. Anal. 233 (2017) 737–759. | DOI | MR | Zbl

[18] A. Figalli, N. Fusco, F. Maggi, V. Millot and M. Morini, Isoperimetry and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 336 (2015) 441–507. | DOI | MR | Zbl

[19] I.S Gradshteyn and I.M Ryzhik, Table of intregrals, series and products; seventh edition (2014). | MR | Zbl

[20] W.P. Johnson, The Curious History of Faá di Bruno’s Formula. Am. Math. Monthly 109 (2002) 217–227. | MR | Zbl

[21] O. Savin, E. Valdinoci, Regularity of nonlocal minimal cones in dimension 2. Calc. Var. Partial Differ. Equ. 48 (2013) 33–39. | DOI | MR | Zbl

[22] F. Schlenk and P. Sicbaldi, Bifurcating extremal domains for the first eigenvalue of the Laplacian. Adv. Math. 229 (2012) 602–632. | DOI | MR | Zbl

[23] P. Sicbaldi, New extremal domains for the first eigenvalue of the Laplacian in flat tori. Calc. Var. PDEs 37 (2010) 329–344. | DOI | MR | Zbl

[24] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math. 60 (2007) 67–112. | DOI | MR | Zbl

Cité par Sources :