An extragradient-type algorithm for variational inequality on Hadamard manifolds
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 63.

This paper presents an extragradient method for variational inequality associated with a point-to-set vector field in Hadamard manifolds, and a study of its convergence properties. To present our method, the concept of ϵ -enlargement of maximal monotone vector fields is used, and its lower-semicontinuity is established to obtain the method convergence in this new context.

DOI : 10.1051/cocv/2019040
Classification : 90C33, 65K05, 47J25
Mots-clés : Extragradient algorithm, Hadamard manifolds, $\epsilon$-enlargement, lower semicontinuity
@article{COCV_2020__26_1_A63_0,
     author = {Batista, E.E.A. and Bento, G.C. and Ferreira, O.P.},
     title = {An extragradient-type algorithm for variational inequality on {Hadamard} manifolds},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019040},
     mrnumber = {4150225},
     zbl = {1451.90159},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019040/}
}
TY  - JOUR
AU  - Batista, E.E.A.
AU  - Bento, G.C.
AU  - Ferreira, O.P.
TI  - An extragradient-type algorithm for variational inequality on Hadamard manifolds
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019040/
DO  - 10.1051/cocv/2019040
LA  - en
ID  - COCV_2020__26_1_A63_0
ER  - 
%0 Journal Article
%A Batista, E.E.A.
%A Bento, G.C.
%A Ferreira, O.P.
%T An extragradient-type algorithm for variational inequality on Hadamard manifolds
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019040/
%R 10.1051/cocv/2019040
%G en
%F COCV_2020__26_1_A63_0
Batista, E.E.A.; Bento, G.C.; Ferreira, O.P. An extragradient-type algorithm for variational inequality on Hadamard manifolds. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 63. doi : 10.1051/cocv/2019040. http://www.numdam.org/articles/10.1051/cocv/2019040/

[1] R.L. Adler, J.-P. Dedieu, J.Y. Margulies, M. Martens and M. Shub, Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22 (2002) 359–390. | DOI | MR | Zbl

[2] P. Ahmadi and H. Khatibzadeh, On the convergence of inexact proximal point algorithm on Hadamard manifolds. Taiwan. J. Math. 18 (2014) 419–433. | DOI | MR | Zbl

[3] M. Bačák, The proximal point algorithm in metric spaces. Israel J. Math. 194 (2013) 689–701. | DOI | MR | Zbl

[4] M. Bačák, R. Bergmann, G. Steidl and A. Weinmann, A second order nonsmooth variational model for restoring manifold-valued images. SIAM J. Sci. Comput. 38 (2016) A567–A597. | DOI | MR | Zbl

[5] E.E.A. Batista, G.C. Bento and O.P. Ferreira, An existence result for the generalized vector equilibrium problem on Hadamard manifolds. J. Optim. Theor. Appl. 167 (2015) 550–557. | DOI | MR | Zbl

[6] E.E.A. Batista, G.D.C. Bento and O.P. Ferreira, Enlargement of monotone vector fields and an inexact proximal point method for variational inequalities in Hadamard manifolds. J. Optim. Theory Appl. 170 (2016) 916–931. | DOI | MR | Zbl

[7] G.C. Bento, O.P. Ferreira and P.R. Oliveira, Proximal point method for a special class of nonconvex functions on Hadamard manifolds. Optimization 64 (2015) 289–319. | DOI | MR | Zbl

[8] R. Bergmann and A. Weinmann, A second-order TV-type approach for inpainting and denoising higher dimensional combined cyclic and vector space data. J. Math. Imaging Vis. 55 (2016) 401–427. | DOI | MR | Zbl

[9] R. Bergmann, J. Persch and G. Steidl, A parallel Douglas-Rachford algorithm for minimizing ROF-like functionals on images with values in symmetric Hadamard manifolds. SIAM J. Imaging Sci. 9 (2016) 901–937. | DOI | MR | Zbl

[10] R. Bhattacharya and V. Patrangenaru, Large sample theory of intrinsic and extrinsic sample means on manifolds. I. Ann. Statist. 31 (2003) 1–29. | MR | Zbl

[11] R. Bhattacharya and V. Patrangenaru, Large sample theory of intrinsic and extrinsic sample means on manifolds. II. Ann. Statist. 33 (2005) 1225–1259. | MR | Zbl

[12] A. Bhattacharya and R. Bhattacharya, Statistics on Riemannian manifolds: asymptotic distribution and curvature. Proc. Am. Math. Soc. 136 (2008) 2959–2967. | DOI | MR | Zbl

[13] G. Bigi, M. Castellani, M. Pappalardo and M. Passacantando, Existence and solution methods for equilibria. Eur. J. Oper. Res. 227 (2013) 1–11. | DOI | MR | Zbl

[14] R.S. Burachik and A.N. Iusem, A generalized proximal point algorithm for the variational inequality problem in a Hilbert space. SIAM J. Optim. 8 (1998) 197–216. | DOI | MR | Zbl

[15] R.S. Burachik and A.N. Iusem, Set-valued mappings and enlargements of monotone operators. Vol. 8 of Springer Optimization and Its Applications. Springer, New York (2008). | MR | Zbl

[16] R.S. Burachik, A.N. Iusem and B.F. Svaiter, Enlargement of monotone operators with applications to variational inequalities. Set-Valued Anal. 5 (1997) 159–180. | DOI | MR | Zbl

[17] S.-L. Chen and N.-J. Huang, Vector variational inequalities and vector optimization problems on Hadamard manifolds. Optim. Lett. 10 (2016) 753–767. | DOI | MR | Zbl

[18] J.X. Cruz Neto, P.S.M. Santos and P.A. Soares, Jr. An extragradient method for equilibrium problems on Hadamard manifolds. Optim. Lett. 10 (2016) 1327–1336. | DOI | MR | Zbl

[19] J.X. Da Cruz Neto, O.P. Ferreira and L.R. Lucambio Pérez, Monotone point-to-set vector fields. Balkan J. Geom. Appl. 5 (2000) 69–79. Dedicated to Professor Constantin Udrişte. | MR | Zbl

[20] J.X. Da Cruz Neto, O.P. Ferreira and L.R. Lucambio Pérez, Contributions to the study of monotone vector fields. Acta Math. Hung. 94 (2002) 307–320. | DOI | MR | Zbl

[21] J.X. Da Cruz Neto, O.P. Ferreira, L.R.L. Pérez and S.Z. Németh, Convex- and monotone-transformable mathematical programming problems and a proximal-like point method. J. Global Optim. 35 (2006) 53–69. | DOI | MR | Zbl

[22] P. Das, N.R. Chakraborti and P.K. Chaudhuri, Spherical minimax location problem. Comput. Optim. Appl. 18 (2001) 311–326. | DOI | MR | Zbl

[23] G. De Carvalho Bento, J.A.X. Da Cruz Neto and P.R. Oliveira, A new approach to the proximal point method: convergence on general Riemannian manifolds. J. Optim. Theory Appl. 168 (2016) 743–755. | DOI | MR | Zbl

[24] M.P. Do Carmo, Riemannian Geometry. Mathematics: Theory & Applications. Birkhäuser Boston Inc., Boston, MA (1992). Translated from the second Portuguese edition by Francis Flaherty. | MR | Zbl

[25] Z. Drezner and G.O. Wesolowsky, Minimax and maximin facility location problems on a sphere. Naval Res. Logist. Quart. 30 (1983) 305–312. | DOI | MR | Zbl

[26] R. Espínola and A. Nicolae, Proximal minimization in CAT ( κ ) spaces. J. Nonlinear Convex Anal. 17 (2016) 2329–2338. | MR | Zbl

[27] C.-J. Fang and S.-L. Chen, A projection algorithm for set-valued variational inequalities on Hadamard manifolds. Optim. Lett. 9 (2015) 779–794. | DOI | MR | Zbl

[28] O.P. Ferreira and P.R. Oliveira, Proximal point algorithm on Riemannian manifolds. Optimization 51 (2002) 257–270. | DOI | MR | Zbl

[29] O.P. Ferreira, L.R.L. Pérez and S.Z. Németh, Singularities of monotone vector fields and an extragradient-type algorithm. J. Global Optim. 31 (2005) 133–151. | DOI | MR | Zbl

[30] P. T. Fletcher, Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vis. 105 (2013) 171–185. | DOI | MR | Zbl

[31] O. Freifeld and M.J. Black, Lie bodies: a manifold representation of 3D human shape, in Proceedings of ECCV 2012. Springer, Berlin (2012).

[32] P. Grohs and S. Hosseini, ε-subgradient algorithms for locally Lipschitz functions on Riemannian manifolds. Adv. Comput. Math. 42 (2016) 333–360. | DOI | MR | Zbl

[33] S. Hawe, M. Kleinsteuber and K. Diepold, Analysis operator learning and its application to image reconstruction. IEEE Trans. Image Process. 22 (2013) 2138–2150. | DOI | MR | Zbl

[34] A.N. Iusem and L.R.L. Pérez, An extragradient-type algorithm for non-smooth variational inequalities. Optimization 48 (2000) 309–332. | DOI | MR | Zbl

[35] M. Kleinsteuber and H. Shen, Blind source separation with compressively sensed linear mixtures. IEEE Signal Process. Lett. 19 (2012) 107–110. | DOI

[36] C. Li and J.-C. Yao, Variational inequalities for set-valued vector fields on Riemannian manifolds: convexity of the solution set and the proximal point algorithm. SIAM J. Control Optim. 50 (2012) 2486–2514. | DOI | MR | Zbl

[37] C. Li, G. López and V. Martín-Márquez, Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79 (2009) 663–683. | DOI | MR | Zbl

[38] S.-L. Li, C. Li, Y.-C. Liou and J.-C. Yao, Existence of solutions for variational inequalities on Riemannian manifolds. Nonlinear Anal. 71 (2009) 5695–5706. | DOI | MR | Zbl

[39] C. Li, G. López, V. Martín-Márquez and J.-H. Wang, Resolvents of set-valued monotone vector fields in Hadamard manifolds. Set-Valued Var. Anal. 19 (2011) 361–383. | DOI | MR | Zbl

[40] R.D.C. Monteiro and B.F. Svaiter, On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean. SIAM J. Optim. 20 (2010) 2755–2787. | DOI | MR | Zbl

[41] S.Z. Németh, Monotone vector fields. Publ. Math. Debrecen 54 (1999) 437–449. | DOI | MR | Zbl

[42] S.Z. Németh, Variational inequalities on Hadamard manifolds. Nonlinear Anal. 52 (2003) 1491–1498. | DOI | MR | Zbl

[43] X. Pennec, Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. J. Math. Imaging Vis. 25 (2006) 127–154. | DOI | MR | Zbl

[44] T. Sakai, Riemannian Geometry, Vol. 149 of Translations of Mathematical Monographs. American Translated fromthe 1992 Japanese original by the author. Mathematical Society, Providence, RI (1996). | MR | Zbl

[45] S.T. Smith, Optimization techniques on Riemannian manifolds, in Hamiltonian and Gradient Flows, Algorithms and Control, Vol. 3 of Fields Institute Communications. American Mathematical Society, Providence, RI (1994) 113–136. | MR | Zbl

[46] J.C.O. Souza and P.R. Oliveira, A proximal point algorithm for DC fuctions on Hadamard manifolds. J. Global Optim. 63 (2015) 797–810. | DOI | MR | Zbl

[47] R. Suparatulatorn, P. Cholamjiak and S. Suantai, On solving the minimization problem and the fixed-point problem for nonexpansive mappings in CAT(0) spaces. Optim. Methods Softw. 32 (2017) 182–192. | DOI | MR | Zbl

[48] G.-J. Tang and N.-J. Huang, Korpelevich’s method for variational inequality problems on Hadamard manifolds. J. Global Optim. 54 (2012) 493–509. | DOI | MR | Zbl

[49] G.-J. Tang and N.-J. Huang, An inexact proximal point algorithm for maximal monotone vector fields on Hadamard manifolds. Oper. Res. Lett. 41 (2013) 586–591. | DOI | MR | Zbl

[50] G.-J. Tang, L.-W. Zhou and N.-J. Huang, The proximal point algorithm for pseudomonotone variational inequalities on Hadamard manifolds. Optim. Lett. 7 (2013) 779–790. | DOI | MR | Zbl

[51] G.-J. Tang, X. Wang and H.-W. Liu, A projection-type method for variational inequalities on Hadamard manifolds and verification of solution existence. Optimization 64 (2015) 1081–1096. | DOI | MR | Zbl

[52] C. Udrişte, Convex functions and optimization methods on Riemannian manifolds, Vol. 297 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (1994). | MR | Zbl

[53] J. Wang, C. Li, G. Lopez and J.-C. Yao, Convergence analysis of inexact proximal point algorithms on Hadamard manifolds. J. Global Optim. 61 (2015) 553–573. | DOI | MR | Zbl

[54] X. Wang, C. Li, J. Wang and J.-C. Yao, Linear convergence of subgradient algorithm for convex feasibility on Riemannian manifolds. SIAM J. Optim. 25 (2015) 2334–2358. | DOI | MR | Zbl

[55] J. Wang, C. Li, G. Lopez and J.-C. Yao, Proximal point algorithms on Hadamard manifolds: linear convergence and finite termination. SIAM J. Optim. 26 (2016) 2696–2729. | DOI | MR | Zbl

[56] X. Wang, C. Li and J.-C. Yao, On some basic results related to affine functions on Riemannian manifolds. J. Optim. Theory Appl. 170 (2016) 783–803. | DOI | MR | Zbl

Cité par Sources :