Global minima for optimal control of the obstacle problem
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 64.

An optimal control problem subject to an elliptic obstacle problem is studied. We obtain a numerical approximation of this problem by discretising the PDE obtained via a Moreau–Yosida type penalisation. For the resulting discrete control problem we provide a condition that allows to decide whether a solution of the necessary first order conditions is a global minimum. In addition we show that the corresponding result can be transferred to the limit problem provided that the above condition holds uniformly in the penalisation and discretisation parameters. Numerical examples with unique global solutions are presented.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019039
Classification : 49J20, 49M05, 49M20, 65M15, 65M60
Mots-clés : Optimal control, obstacle problem, Moreau–Yosida penalisation, finite elements, global solution
@article{COCV_2020__26_1_A64_0,
     author = {Ali, Ahmad Ahmad and Deckelnick, Klaus and Hinze, Michael},
     title = {Global minima for optimal control of the obstacle problem},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019039},
     mrnumber = {4150227},
     zbl = {1448.49004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019039/}
}
TY  - JOUR
AU  - Ali, Ahmad Ahmad
AU  - Deckelnick, Klaus
AU  - Hinze, Michael
TI  - Global minima for optimal control of the obstacle problem
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019039/
DO  - 10.1051/cocv/2019039
LA  - en
ID  - COCV_2020__26_1_A64_0
ER  - 
%0 Journal Article
%A Ali, Ahmad Ahmad
%A Deckelnick, Klaus
%A Hinze, Michael
%T Global minima for optimal control of the obstacle problem
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019039/
%R 10.1051/cocv/2019039
%G en
%F COCV_2020__26_1_A64_0
Ali, Ahmad Ahmad; Deckelnick, Klaus; Hinze, Michael. Global minima for optimal control of the obstacle problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 64. doi : 10.1051/cocv/2019039. http://www.numdam.org/articles/10.1051/cocv/2019039/

[1] A. Ahmad Ali, K. Deckelnick and M. Hinze, Global minima for semilinear optimal control problems. Comput. Optim. Appl. 65 (2016) 261–288. | DOI | MR | Zbl

[2] A. Ahmad Ali, K. Deckelnick and M. Hinze, Error analysis for global minima of semilinear optimal control problems. Math. Control Related Fields 8 (2018) 195–215. | DOI | MR | Zbl

[3] V. Barbu, Optimal control of variational inequalities. In Vol. 100 of Research Notes in Mathematics. Pitman, Boston (1984). | MR | Zbl

[4] S. Bartels, Numerical methods for nonlinear partial differential equations. Vol. 47 of Springer Series in Computational Mathematics. Springer, Cham (2015). | DOI | MR | Zbl

[5] M. Bergounioux and F. Mignot, Optimal control of obstacle problems: existence of Lagrange multipliers. ESAIM: COCV 5 (2000) 45–70. | Numdam | MR | Zbl

[6] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Vol. 15 of Texts in Applied Mathematics, 3rd edn. Springer, New York (2008). | DOI | MR | Zbl

[7] M. Hintermüller, Inverse coefficient problems for variational inequalities: optimality conditions and numerical realization. ESAIM: M2AN 35 (2001) 129–152. | DOI | Numdam | MR | Zbl

[8] M. Hintermüller and I. Kopacka, A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs. Comput. Optim. Appl. 50 (2011) 111–145. | DOI | MR | Zbl

[9] M. Hintermüller, R.H.W. Hoppe and C. Löbhard, Dual-weighted goal-oriented adaptive finite elements for optimal control of elliptic variational inequalities. ESAIM: COCV 20 (2014) 524–546. | Numdam | MR | Zbl

[10] K. Ito and K. Kunisch, Optimal control of elliptic variational inequalities. Appl. Math. Optim. 41 (2000) 343–364. | DOI | MR | Zbl

[11] K. Kunisch and D. Wachsmuth, Path–following for optimal control of stationary variational inequalities. Comput. Opt. Appl. 51 (2012) 1345–1373. | DOI | MR | Zbl

[12] K. Kunisch and D. Wachsmuth, Sufficient optimality conditions and semi–smooth Newton methods for optimal control of stationary variational inequalities. ESAIM: COCV 18 (2012) 520–547. | Numdam | MR | Zbl

[13] C. Meyer and O. Thoma, A priori finite element error analysis for optimal control of the obstacle problem. SIAM J. Numer. Anal. 51 (2013) 605–628. | DOI | MR | Zbl

[14] C. Meyer, A. Rademacher and W. Wollner, Adaptive optimal control of the obstacle problem. SIAM J. Sci. Comput. 37 (2015) 918–945. | DOI | MR | Zbl

[15] F. Mignot, Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22 (1976) 130–185. | DOI | MR | Zbl

[16] F. Mignot and J.-P. Puel, Optimal control in some variational inequalities. SIAM J. Control Optim. 22 (1984) 466–476. | DOI | MR | Zbl

[17] A.-T. Rauls and G. Wachsmuth, Generalized derivatives for the solution operator of the obstacle problem. Preprint (2018). | arXiv | MR

[18] A. Schiela and D. Wachsmuth, Convergence analysis of smoothing methods for optimal control of stationary variational inequalities with control constraints. ESAIM: M2AN 47 (2013) 771–787. | DOI | Numdam | MR | Zbl

[19] G. Wachsmuth, Strong stationarity for optimal control of the obstacle problem with control constraints. SIAM J. Optim. 24 (2014) 1914–1932. | DOI | MR | Zbl

Cité par Sources :