The effect of the terminal penalty in Receding Horizon Control for a class of stabilization problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 58.

The Receding Horizon Control (RHC) strategy consists in replacing an infinite-horizon stabilization problem by a sequence of finite-horizon optimal control problems, which are numerically more tractable. The dynamic programming principle ensures that if the finite-horizon problems are formulated with the exact value function as a terminal penalty function, then the RHC method generates an optimal control. This article deals with the case where the terminal cost function is chosen as a cut-off Taylor approximation of the value function. The main result is an error rate estimate for the control generated by such a method, when compared with the optimal control. The obtained estimate is of the same order as the employed Taylor approximation and decreases at an exponential rate with respect to the prediction horizon. To illustrate the methodology, the article focuses on a class of bilinear optimal control problems in infinite-dimensional Hilbert spaces.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019037
Classification : 49J20, 49L20, 49Q12, 93D15
Mots-clés : Receding horizon control, model predictive control, bilinear control, Riccati equation, value function
@article{COCV_2020__26_1_A58_0,
     author = {Kunisch, Karl and Pfeiffer, Laurent},
     title = {The effect of the terminal penalty in {Receding} {Horizon} {Control} for a class of stabilization problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019037},
     mrnumber = {4146355},
     zbl = {1448.49007},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019037/}
}
TY  - JOUR
AU  - Kunisch, Karl
AU  - Pfeiffer, Laurent
TI  - The effect of the terminal penalty in Receding Horizon Control for a class of stabilization problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019037/
DO  - 10.1051/cocv/2019037
LA  - en
ID  - COCV_2020__26_1_A58_0
ER  - 
%0 Journal Article
%A Kunisch, Karl
%A Pfeiffer, Laurent
%T The effect of the terminal penalty in Receding Horizon Control for a class of stabilization problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019037/
%R 10.1051/cocv/2019037
%G en
%F COCV_2020__26_1_A58_0
Kunisch, Karl; Pfeiffer, Laurent. The effect of the terminal penalty in Receding Horizon Control for a class of stabilization problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 58. doi : 10.1051/cocv/2019037. http://www.numdam.org/articles/10.1051/cocv/2019037/

[1] F. Allgöwer and A. Zheng, editors. Nonlinear model predictive control. Vol. 26 of Progress in Systems and Control Theory. Papers from the workshop held in Ascona, June 2–6, 1998. Birkhäuser Verlag, Basel (2000). | MR

[2] F. Allgöwer, T. Badgwell, J. Rawlings, J. Qin and S. Wright, Nonlinear predictive control and moving horizon estimation – an introductory overview. Advances in Control, edited by P. Frank. Springer, London (1999) 391–449.

[3] B. Azmi and K. Kunisch, On the stabilizability of the Burgers equation by receding horizon control. SIAM J. Control Optim. 54 (2016) 1378–1405. | DOI | MR | Zbl

[4] B. Azmi and K. Kunisch, Receding horizon control for the stabilization of the wave equation. Discrete Contin. Dyn. Syst. 38 (2018) 449–484. | DOI | MR | Zbl

[5] M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: Application to the navier-stokes system. SIAM J. Control Optim. 49 (2011) 420–463. | DOI | MR | Zbl

[6] T. Breiten and L. Pfeiffer, On the turnpike property and the receding-horizon method for linear-quadratic optimal control problems. Preprint (2018). | arXiv | MR

[7] T. Breiten, K. Kunisch and L. Pfeiffer, Taylor expansions for the HJB equation associated with a bilinear control problem. Ann. Inst. Henri Poincaré C, Analyse Non Linéaire 36 (2019) 1361–1399. | DOI | MR | Zbl

[8] T. Breiten, K. Kunisch and L. Pfeiffer, Control strategies for the Fokker-Planck equation. ESAIM: COCV 24 (2018) 741–763. | Numdam | MR | Zbl

[9] T. Breiten, K. Kunisch and L. Pfeiffer, Infinite-horizon bilinear optimal control problems: Sensitivity analysis and polynomial feedback laws. SIAM J. Control Optim. 56 (2018) 3184–3214. | DOI | MR | Zbl

[10] T. Breiten, K. Kunisch and L. Pfeiffer, Numerical study of polynomial feedback laws for a Preprint bilinear control problem. Math. Control Relat. Fields 8 (2018) 557–582. | DOI | MR | Zbl

[11] R.F. Curtain and H.J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory. Springer-Verlag (2005). | Zbl

[12] R.A. Freeman and P.V. Kokotović, Robust nonlinear control design. State-space and Lyapunov techniques. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA (1996). | MR | Zbl

[13] G. Grimm, M.J. Messina, S.E. Tuna and A.R. Teel, Model predictive control: for want of a local control Lyapunov function, all is not lost. IEEE Trans. Automat. Control 50 (2005) 546–558. | DOI | MR | Zbl

[14] L. Grüne, Analysis and design of unconstrained nonlinear MPC schemes for finite and infinite dimensional systems. SIAM J. Control Optim. 48 (2009) 1206–1228. | DOI | MR | Zbl

[15] L. Grüne and A. Rantzer, On the infinite horizon performance of receding horizon controllers. IEEE Trans. Automat. Control 53 (2008) 2100–2111. | DOI | MR | Zbl

[16] L. Grüne and J. Pannek, Nonlinear model predictive control. Theory and algorithms. Communications and Control Engineering Series. Springer, London (2011). | DOI | MR | Zbl

[17] L. Grüne, M. Schaller and A. Schiela, Sensitivity analysis of optimal control for a class of parabolic pdes motivated by model predictive control. Department of Mathematics, University of Bayreuth (2018). | MR

[18] C. Hartmann, B. Schäfer-Bund and A. Thöns-Zueva, Balanced averaging of bilinear systems with applications to stochastic control. SIAM J. Control Optim. 51 (2013) 2356–2378. | DOI | MR | Zbl

[19] K. Ito and K. Kunisch, Asymptotic properties of receding horizon optimal control problems. SIAM J. Control Optim. 40 (2002) 1585–1610. | DOI | MR | Zbl

[20] A. Jadbabaie and J. Hauser, On the stability of receding horizon control with a general terminal cost. IEEE Trans. Automat. Control 50 (2005) 674–678. | DOI | MR | Zbl

[21] A. Jadbabaie, Y. Jie and J. Hauser, Unconstrained receding-horizon control of nonlinear systems. IEEE Trans. Automat. Control 46 (2001) 776–783. | DOI | MR | Zbl

[22] S.S. Keerthi and E.G. Gilbert, Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: stability and moving-horizon approximations. J. Optim. Theory Appl. 57 (1988) 265–293. | DOI | MR | Zbl

[23] D.L. Kleinman, An easy way to stabilize a linear constant system. IEEE Trans. Automat. Contr. 15 (1970) 692–712. | DOI

[24] A.J. Krener, Adaptive Horizon Model Predictive Control. Preprint (2016). | arXiv

[25] A.J. Krener, C.O. Aguilar and T.W. Hunt, Mathematical system theory – series solutions of HJB equations. Festschrift in honor of Uwe Helmke on the occasion of his sixtieth birthday. CreateSpace (2013) 247–260.

[26] D.Q. Mayne and H. Michalska, Receding horizon control of nonlinear systems. IEEE Trans. Autom. Contr. 35 (1990) 814–824. | DOI | MR | Zbl

[27] D.Q. Mayne, J.B. Rawlings, C.V. Rao and P.O.M. Scokaert, Constrained model predictive control: stability and optimality. Automatica J. IFAC 36 (2000) 789–814. | DOI | MR | Zbl

[28] J.A. Primbs, V. Nevistić and J.C. Doyle, A receding horizon generalization of pointwise min-norm controllers. IEEE Trans. Automat. Control 45 (2000) 898–909. | DOI | MR | Zbl

[29] J.-P. Raymond, Stabilizability of infinite-dimensional systems by finite-dimensional controls. Comput. Methods Appl. Math. 2 (2018) 267–282. . | MR | Zbl

[30] M. Reble and F. Allgöwer, Unconstrained model predictive control and suboptimality estimates for nonlinear continuous-time systems. Automatica J. IFAC 48 (2012) 1812–1817. | DOI | MR | Zbl

[31] P.O.M. Scokaert, D.Q. Mayne and J.B. Rawlings, Suboptimal model predictive control (feasibility implies stability). IEEE Trans. Automat. Control 44 (1999) 648–654. | DOI | MR | Zbl

[32] G. Wang and Y. Xu, Periodic feedback stabilization for linear periodic evolution equations. Springer Briefs in Mathematics. BCAM Basque Center for Applied Mathematics, Bilbao, Springer, Cham (2016). | MR | Zbl

Cité par Sources :

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 668998).