A minimisation problem in L with PDE and unilateral constraints
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 60.

We study the minimisation of a cost functional which measures the misfit on the boundary of a domain between a component of the solution to a certain parametric elliptic PDE system and a prediction of the values of this solution. We pose this problem as a PDE-constrained minimisation problem for a supremal cost functional in L$$, where except for the PDE constraint there is also a unilateral constraint on the parameter. We utilise approximation by PDE-constrained minimisation problems in L$$ as p and the generalised Kuhn-Tucker theory to derive the relevant variational inequalities in L$$ and L$$. These results are motivated by the mathematical modelling of the novel bio-medical imaging method of Fluorescent Optical Tomography.

DOI : 10.1051/cocv/2019034
Classification : 35Q93, 49K20, 49J40
Mots-clés : Absolute minimisers, calculus of variations in L, PDE-constrained optimisation, generalised Kuhn–Tucker theory, Lagrange multipliers, fluorescent optical tomography, Robin boundary conditions
@article{COCV_2020__26_1_A60_0,
     author = {Katzourakis, Nikos},
     title = {A minimisation problem in $L^\infty$ with {PDE} and unilateral constraints},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019034},
     mrnumber = {4146356},
     zbl = {1451.35240},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2019034/}
}
TY  - JOUR
AU  - Katzourakis, Nikos
TI  - A minimisation problem in $L^\infty$ with PDE and unilateral constraints
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2019034/
DO  - 10.1051/cocv/2019034
LA  - en
ID  - COCV_2020__26_1_A60_0
ER  - 
%0 Journal Article
%A Katzourakis, Nikos
%T A minimisation problem in $L^\infty$ with PDE and unilateral constraints
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2019034/
%R 10.1051/cocv/2019034
%G en
%F COCV_2020__26_1_A60_0
Katzourakis, Nikos. A minimisation problem in $L^\infty$ with PDE and unilateral constraints. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 60. doi : 10.1051/cocv/2019034. http://www.numdam.org/articles/10.1051/cocv/2019034/

[1] G.S. Abdoulaev, K. Ren and A.H. Hielscher, Optical tomography as a PDE-constrained optimization problem. Inverse Probl. 21 (2005) 1507–1530. | DOI | MR | Zbl

[2] R.A. Adams, Sobolev spaces, second edition, Academic Press (2012). | Zbl

[3] D. Alvarez, P. Medina and M. Moscoso, Fluorescence lifetime imaging from time resolved measurements using a shape-based approach. Opt. Express 17 (2009) 8843–8855. | DOI

[4] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000). | DOI | MR | Zbl

[5] C. Amrouche, C. Conca, A. Ghosh and T. Ghosh, Uniform W 1 , p estimate for elliptic operator with Robin boundary condition in 𝒞 1 domain. Preprint (2018). | arXiv | MR

[6] G. Aronsson, Minimization problems for the functional sup x F ( x , f ( x ) , f ' ( x ) ) . Arkiv für Mat. 6 (1965) 33–53. | DOI | MR | Zbl

[7] G. Aronsson, Minimization problems for the functional  sup x F ( x , f ( x ) , f ' ( x ) ) . II. Arkiv für Mat. 6 (1966) 409–431. | DOI | MR | Zbl

[8] G. Aronsson, Extension of functions satisfying Lipschitz conditions. Arkiv für Mat. 6 (1967) 551–561. | DOI | MR | Zbl

[9] G. Aronsson, On Certain Minimax Problems and Pontryagin’s Maximum Principle. Cal. Variat. Partial Differ. Equ. 37 (2010) 99–109. | DOI | MR | Zbl

[10] G. Aronsson and E.N. Barron, L variational problems with running costs and constraints. Appl. Math. Optim. 65 (2012) 53–90. | DOI | MR | Zbl

[11] S.R. Arridge, Optical tomography in medical imaging. Inverse Probl. 15 (1999) R41–R93. | DOI | MR | Zbl

[12] W. Bangerth and A. Joshi, Nonlinear inversion for optical tomography, in Proceedings of the CT2008 – Tomography Confluence: An International Conference on the Applications of Computerized Tomography, Kanpur, India, February 2008, edited by P. Munshi. American Institute of Physics (2008).

[13] W. Bangerth and A. Joshi, Adaptive finite element methods for nonlinear inverse problems, in Proceedings of the 24rd ACM Symposium on Applied Computing, March 8–12, 2009, Honolulu, Hawaii, edited by D. Shin (2009) 1002–1006. | DOI

[14] E.N. Barron and R. Jensen, Minimizing the L norm of the gradient with an energy constraint. Commun. Part. Differ. Equ. 30 (2005) 1741–1772. | DOI | MR | Zbl

[15] E.N. Barron, R. Jensen and C. Wang, The Euler equation and absolute minimizers of L functionals. Arch. Ratl. Mech. Anal. 157 (2001) 255–283. | DOI | MR | Zbl

[16] E.N. Barron, M. Bocea and R. Jensen, Viscosity solutions of stationary Hamilton-Jacobi equations and minimizers of L functionals. Proc. Am. Math. 145 (2017) 5257–5265. | DOI | MR | Zbl

[17] M. Bocea and V. Nesi, Γ -convergence of power-law functionals, variational principles in L , and applications. SIAM J. Math. Anal. 39 (2008) 1550–1576. | DOI | MR | Zbl

[18] M. Bocea and C. Popovici, Variational principles in L with applications to antiplane shear and plane stress plasticity. J. Convex Anal. 18 (2011) 403–416. | MR | Zbl

[19] T. Champion, L. De Pascale and F. Prinari, Γ -convergence and absolute minimizers for supremal functionals. ESAIM: COCV 10 (2004) 14–27. | Numdam | MR | Zbl

[20] M.G. Crandall, A visit with the ∞-Laplacian, Calculus of Variations and Non-Linear Partial Differential Equations. In Vol. 1927 of Springer Lecture notes in Mathematics. CIME, Cetraro Italy (2005). | MR | Zbl

[21] B. Dacorogna, Direct Methods in the Calculus of Variations, 2nd edition. Vol. 78 of Applied Mathematical Sciences. Springer (2008). | MR | Zbl

[22] D. Daners, Robin boundary value problems on arbitrary domains. Trans. AMS 352 (2000) 4207–4236. | DOI | MR | Zbl

[23] H. Dong and D. Kim, Elliptic equations in divergence form with partially BMO coefficients. Arch. Rat. Mech. Anal. 196 (2010) 25–70. | DOI | MR | Zbl

[24] L.C. Evans, Partial differential equations, Graduate Studies in Mathematics 19.1, 2nd edition, AMS (2010). | MR | Zbl

[25] T.J. Farell and M.S. Patterson, Diffusion modeling of fluorescence in tissue, in Handbook of Biomedical Fluorescence, edited by M.-A. Mycek and B.W. Pogue. Marcel Dekker Inc., New York, Basel (2003). | DOI

[26] I. Fonseca and G. Leoni, Modern methods in the Calculus of Variations: L p spaces. Springer Monographs in Mathematics (2007). | MR | Zbl

[27] M. Freiberger, H. Egger and H. Scharfetter, Nonlinear inversion in fluorescent optical tomography. IEEE Trans. Biomed. Eng. 57 (2010) 2723–2729. | DOI

[28] A. Garroni, V. Nesi and M. Ponsiglione, Dielectric breakdown: optimal bounds. Proc. R. Soc. A 457 (2001) 2014. | DOI | MR | Zbl

[29] J. Geng, W 1 , p estimates for elliptic problems with Neumann boundary conditions in Lipschitz domains. Adv. Math. 229 (2012) 2427–2448. | DOI | MR | Zbl

[30] T. Ghosh, personal communication.

[31] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Vol. 105 of Annals of Mathematics Studies. Princeton University Press, Princeton (1983). | MR | Zbl

[32] M. Giaquinta and L. Martinazzi, An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs. Publications of the Scuola Normale Superiore 11. Springer (2012). | MR | Zbl

[33] A.P. Gibson, J.C. Hebden and S.R. Arridge, Recent advances in diffuse optical imaging. Phys. Med. Biol. 50 (2005) R1–R43. | DOI

[34] A. Godavarty, M.J. Eppstein, C. Zhang, S. Theru, A.B. Thompson, M. Gurfinkel and E.M. Sevick-Muraca, Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera. Phys. Med. Biol. 48 (2003) 1701–1720. | DOI

[35] A. Joshi, W. Bangerth and W.M. Sevick-Muraca, Adaptive finite element based tomography for fluorescence optical imaging in tissue. Opt. Express 12 (2004) 5402–5417. | DOI

[36] N. Katzourakis, An introduction to viscosity solutions for fully nonlinear PDE with applications to calculus of variations in L . Springer Briefs Math. (2015). | DOI | MR | Zbl

[37] N. Katzourakis, Inverse optical tomography through PDE-constrained optimisation in L, Preprint (2019). | arXiv | MR

[38] N. Katzourakis and R. Moser, Existence, uniqueness and structure of second order absolute minimisers. Arch. Ratl. Mech. Anal. 231 (2019) 1615–1634. | DOI | MR | Zbl

[39] N. Katzourakis and T. Pryer, 2nd order L variational problems and the -Polylaplacian. Adv. Cal. Variat. 13 (2020) 115–140. | DOI | MR | Zbl

[40] N. Katzourakis and E. Parini, The Eigenvalue Problem for the -Bilaplacian. Nonlinear Differ. Equ. Appl. 24 (2017) 68. | DOI | MR | Zbl

[41] N. Katzourakis and E. Varvaruca, An Illustrative Introduction to Modern Analysis. CRC Press/Taylor & Francis (2017). | MR

[42] C.E. Kenig, F. Lin and Z. Shen, Homogenization of elliptic systems with Neumann boundary conditions. J. Am. Math. Soc. 26 (2013) 901–937. | DOI | MR | Zbl

[43] Q. Miao, C. Wang and Y. Zhou, Uniqueness of absolute minimizers for L -functionals involving Hamiltonians H ( x , p ) . Arch. Ratl. Mech. Anal. 223 (2017) 141–198. | DOI | MR | Zbl

[44] R. Nittka, Elliptic and Parabolic Problems with Robin Boundary Conditions on Lipschitz Domains. Ph.D. thesis, Universität Ulm, Fakultät für Mathematik und Wirtschaftswissenschaften (2010).

[45] R. Nittka, Regularity of solutions of linear second order elliptic and parabolic boundary value problems on Lipschitz domains. J. Differ. Equ. 251 (2011) 860–880. | DOI | MR | Zbl

[46] G. Papamikos and T. Pryer, A Lie symmetry analysis and explicit solutions of the two-dimensional -Polylaplacian. Stud. Appl. Math. 142 (2019) 48–64. | DOI | MR | Zbl

[47] F. Prinari, On the lower semicontinuity and approximation of L -functionals. NoDEA 22 (2015) 1591–1605. | DOI | MR | Zbl

[48] A.N. Ribeiro and E. Zappale, Existence of minimisers for nonlevel convex functionals. SIAM J. Control Opt. 52 (2014) 3341–3370. | DOI | MR | Zbl

[49] G. Zacharakis, J. Ripoll, R. Weissleder and V. Ntziachristos, Fluorescent protein tomograpy scanner for small animal imaging. IEEE Trans. Med. Imag. 24 (2005) 878–885. | DOI

[50] E. Zeidler, Nonlinear Functional Analysis and its Application III: Variational Methods and Optimization, Springer-Verlag (1985). | MR | Zbl

[51] B. Zhu and A. Godavarty, Near-Infrared Fluorescence-Enhanced Optical Tomography, Hindawi Publishing Corporation. BioMed Research Inter. 2016 (2016) 5040814.

Cité par Sources :

The author has been partially financially supported by the EPSRC grant EP/N017412/1.